\(4x^2+3xy-11y^2=5x^2-x^2-2xy+5xy-10y^2-y^2\)
\(=5\left(x^2+xy+2y^2\right)-\left(x^2+2xy+y^2\right)=5\left(x^2+xy+2y^2\right)-\left(x+y\right)^2\)
Ta có \(4x^2+3xy-11y^2\) chia hết cho 5
=> \(\left(x+y\right)^2\) chia hết cho 5
Mà 5 là số nguyên tố
=> x+y chia hết cho 5
Mặt khác
\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
=> \(x^4-y^4\) chia hết cho 5 (đpcm)