a) Ta có: \(a\left(b-c\right)+c\left(a-b\right)\)
\(=ab-ac+ac-bc\)
\(=ab-bc\)
\(=b\left(a-c\right)\)(đpcm)
b) Ta có: \(a\left(b-c\right)-b\left(a+c\right)\)
\(=ab-ac-ab-bc\)
\(=-ac-bc\)
\(=\left(-c\right)\cdot\left(a+b\right)=\left(a+b\right)\cdot\left(-c\right)\)(đpcm)
c) Ta có: \(a\left(b+c\right)-b\left(a-c\right)\)
\(=ab+ac-ab+bc\)
\(=ac+bc\)
\(=\left(a+b\right)\cdot c\)(đpcm)
d) Sửa đề: \(a\left(b-c\right)-a\left(b+d\right)\)
Ta có: \(a\left(b-c\right)-a\left(b+d\right)\)
\(=ab-ac-ab-ad\)
\(=-ac-ad\)
\(=-a\left(c+d\right)\)(đpcm)