Bạn đã like Trang để nhận thông báo mới nhất về cuộc thi chưa?
Cuộc thi Toán Tiếng Anh VEMC | Facebook
Có câu hỏi hay? Gửi ngay chờ chi:
[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu
-------------------------------------------------------------------
[Toán.C45 _ 3.2.2021]
Trích câu 5, đề thi tuyển sinh THPT Bà Rịa - Vũng Tàu, 2019-2020: Cho các số thực dương x,y thỏa mãn \(x+y\le3.\) Tìm giá trị nhỏ nhất của biểu thức
\(P=\dfrac{1}{5xy}+\dfrac{5}{x+2y+5}\).
[Toán.C46 _ 3.2.2021]
Trích câu 10, đề thi tuyển sinh THPT Bắc Ninh, 2019-2020: Cho hai số thực không âm a,b thỏa mãn \(a^2+b^2=2.\) Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(M=\dfrac{a^3+b^3+4}{ab+1}\).
[Toán.C47 _ 3.2.2021]
Trích câu 5, đề thi tuyển sinh THPT Bình Định, 2019-2020: Cho x,y là hai số thực thỏa mãn x > y và xy = 1. Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{x^2+y^2}{x-y}\).
[Toán.C48 _ 3.2.2021]
Trích câu 5, đề thi tuyển sinh THPT Đắc Lắc, 2019-2020: Cho ba số thực dương x,y,z thỏa mãn x + 2y + 3z = 2. Tìm giá trị nhỏ nhất của biểu thức
\(S=\sqrt{\dfrac{xy}{xy+3z}}+\sqrt{\dfrac{3yz}{3yz+x}}+\sqrt{\dfrac{3xz}{3xz+4y}}\)
C47: Dễ thấy x > 1.
Áp dụng bất đẳng thức AM - GM ta có \(P=\dfrac{x^2+\dfrac{1}{x^2}}{x-\dfrac{1}{x}}=\dfrac{x^4+1}{x^3-x}=\dfrac{\left(x^2-1\right)^2}{x^3-x}+\dfrac{2x^2}{x^3-x}=\dfrac{x^2-1}{x}+\dfrac{2x}{x^2-1}\ge2\sqrt{2}\).
Đẳng thức xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\dfrac{x^2-1}{x}=\dfrac{2x}{x^2-1}\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2+\sqrt{3}}\\y=\dfrac{1}{\sqrt{2+\sqrt{3}}}\end{matrix}\right.\).
Vậy Min P = \(2\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2+\sqrt{3}}\\y=\dfrac{1}{\sqrt{2+\sqrt{3}}}\end{matrix}\right.\)
C48: Đề bài là tìm GTLN chứ nhỉ?
Đặt x = a; 2y = b; 3z = c (a, b, c > 0). Khi đó a + b + c = 2.
Ta có \(S=\sqrt{\dfrac{ab}{ab+2c}}+\sqrt{\dfrac{bc}{bc+2a}}+\sqrt{\dfrac{ca}{ca+2b}}\)
\(=\sqrt{\dfrac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(b+c\right)\left(b+a\right)}}\)
\(\le_{AM-GM}\dfrac{1}{2}\left(\dfrac{a}{c+a}+\dfrac{b}{c+b}+\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{c}{b+c}+\dfrac{a}{b+a}\right)=\dfrac{1}{2}.3=\dfrac{3}{2}\).
Đẳng thức xảy ra khi và chỉ khi a = b = c = \(\dfrac{2}{3}\Leftrightarrow x=\dfrac{2}{3};y=\dfrac{1}{3};z=\dfrac{2}{9}\).
Vậy Max S = \(\dfrac{3}{2}\Leftrightarrow x=\dfrac{2}{3};y=\dfrac{1}{3};z=\dfrac{2}{9}\).
Các anh chị giáo viên box Toán đánh giá câu trả lời của các bạn giúp em nhé :>
em chưa học cái dạng nào mà nó như thế này cả
C46 Tìm GTNN:
\(ab\le\dfrac{a^2+b^2}{2}=1\) (Áp dụng bất đẳng thức Cô-si)
Ta chứng minh bất đẳng thức phụ : \(\left(a^3+b^3\right)\left(a+b\right)\ge\left(a^2+b^2\right)^2\)\(\Leftrightarrow a^4+a^3b+b^3a+b^4\ge a^4+2a^2b^2+b^4\) \(\Leftrightarrow a^3b+b^3a\ge2a^2b^2\Leftrightarrow ab\cdot\left(a-b\right)^2\ge0\) (Hiển nhiên vì a,b>0)
⇒\(a^3+b^3\ge\dfrac{\left(a^2+b^2\right)^2}{a+b}\ge\dfrac{4}{\sqrt{2\left(a^2+b^2\right)}}=\dfrac{4}{\sqrt{4}}=2\)
\(\Rightarrow M=\dfrac{a^3+b^3+4}{ab+1}\ge\dfrac{2+4}{1+1}=3\) Dấu bằng xảy ra \(\Leftrightarrow a=b=1\)
Câu 45.
\(P=\dfrac{1}{5xy}+\dfrac{5}{x+2y+5}\ge\dfrac{1}{5xy}+\dfrac{5}{x+2y+5}+\dfrac{3}{20}\left(x+y-3\right)\)
\(=\left[\dfrac{1}{10}x+\dfrac{1}{20}y+\dfrac{1}{5xy}\right]+\left[\dfrac{1}{20}\left(x+2y+5\right)+\dfrac{5}{x+2y+5}\right]-\dfrac{7}{10}\)
\(\ge\left(\dfrac{\sqrt{2xy}}{20}+\dfrac{\sqrt{2xy}}{20}+\dfrac{1}{5xy}\right)+2\sqrt{\dfrac{1}{20}\left(x+2y+5\right)\cdot\dfrac{5}{x+2y+5}}-\dfrac{7}{10}\)
\(\ge3\sqrt[3]{\left(\dfrac{\sqrt{2xy}}{20}\right)^2\cdot\dfrac{1}{5xy}}+2\sqrt{\dfrac{5}{20}}-\dfrac{7}{10}\)
\(=\dfrac{3}{10}+1-\dfrac{7}{10}=\dfrac{3}{5}\)
Đẳng thức xảy ra khi \(x=1,y=2\)
Note.
Mấu chốt của lời giải này là tìm ra được điểm rơi $x=1,y=2.$ Có thể làm như sau:
Xét hàm \(f\left(x,y\right)=\dfrac{1}{5xy}+\dfrac{5}{x+2y+5}+k\left(x+y-3\right)\)
Cách 1. Ta thấy điểm cực trị của $f(x,y)$ là nghiệm của hệ phương trình sau:
\(\left\{{}\begin{matrix}\dfrac{\partial F}{\partial x}=0\\\dfrac{\partial F}{\partial y}=0\\x+y=3\end{matrix}\right.\Rightarrow x=1,y=2,k=\dfrac{3}{20},\) từ đây lý giải được tại sao lại có cách cộng thêm \(\dfrac{3}{20}\left(x+y-3\right)\) như lời giải bên trên.
Ngoài ra còn một cách khác để tìm điểm rơi như sau.
\(F(x,y)=\left[ \left( k-m \right) x+ \left( k-2\,m \right) y+\dfrac{1}{5xy}\right]+\left[m(x+2y+5)+\dfrac{5}{x+2y+5}\right]-3k-5m\)
Sau khi áp dụng bất đẳng thức Cauchy ta thấy đẳng thức phải đạt tại
\(\left\{{}\begin{matrix}\left(k-m\right)x=\left(k-2m\right)y\\\sqrt{\left(k-m\right)\left(k-2m\right)xy}=\dfrac{1}{5xy}\\m\left(x+2y+5\right)=\dfrac{5}{x+2y+5}\end{matrix}\right.\) và \(x+y=3\) (cái này do ta dự đoán)
Sau khi giải hệ khá cồng kềnh bên trên ta thu được \(x=1,y=2,k=\dfrac{3}{20},m=\dfrac{1}{20}\)
P/s: Ez game:D Và cách tìm điểm rơi thứ $2$ dễ hơn cách 1 cả về mặt kiến thức lẫn áp dụng, vì chỉ cần tìm xong thế ngược $m,k$ lại là ta thu được lời giải. Vả lại HS THCS chưa được học nhân tử Langrange nên chắc chắn cách $2$ là phù hợp nhất.