Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Thị Yến Nhi

Bài1: Cho \(ac=b^2;bd=c^2\)

CMR \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)

Bài2: Cho \(\frac{2a+b+c}{a}=\frac{a+2b+c}{b}=\frac{a+b+2c}{c}\)

Tính N= \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

GIÚP MÌNH VS!!!! ĐANG CẦN GẤP

Nguyên
7 tháng 8 2017 lúc 15:48

Bài 2 :

Ta có :

\(\dfrac{2a+b+c}{a}=\dfrac{a+2b+c}{b}=\dfrac{a+b+2c}{c}\)

\(\Rightarrow\dfrac{2a+b+c}{a}-1=\dfrac{a+2b+c}{b}-1=\dfrac{a+b+2c}{c}-1\)\(\Rightarrow\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)

* Nếu \(a+b+c=0\), Ta suy ra các đẳng thức sau :

\(\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

Thay các đẳng thức vừa tìm được vào N, ta có :

\(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

\(\Leftrightarrow N=\dfrac{-c}{c}+\dfrac{-a}{a}+\dfrac{-b}{b}\)

\(\Leftrightarrow N=-1+\left(-1\right)+\left(-1\right)=-3\)

* Nếu \(a+b+c\ne0\)

Để \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}=\dfrac{a+b+c}{c}\)

\(\Rightarrow a=b=c\)

\(\left\{{}\begin{matrix}a+b=2c\\b+c=2a\\c+a=2b\end{matrix}\right.\)

Thay các đẳng thức vào N ta có :

\(N=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

\(\Leftrightarrow N=\dfrac{2c}{c}+\dfrac{2a}{a}+\dfrac{2b}{b}=2+2+2=6\)

Vậy.....

tik mik nha !!!


Các câu hỏi tương tự
Nguyen Nghia Gia Bao
Xem chi tiết
Nguyễn Thị Thùy Linh
Xem chi tiết
ITACHY
Xem chi tiết
Đào Việt Anh
Xem chi tiết
Nguyễn Thị Hoài An
Xem chi tiết
Alexandra
Xem chi tiết
Chu Thiên Anh
Xem chi tiết
Công chúa bong bóng
Xem chi tiết
Lysandra
Xem chi tiết