Cho a,b,c>0 và dãy tỉ số \(\frac{2b+c-a}{a}\)=\(\frac{2c-b+a}{b}\)=\(\frac{2a+b-c}{c}\)
Tính P=\(\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Cho a, b, c>0 và\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính Q=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
Help!!!
cho tỉ lệ thúc \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng
\(a,\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(b,\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)
cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a,b,c,d\ne0\right)\)
Tính \(A=\frac{2011a-2010b}{c+d}+\frac{2011b+2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)\(\left(a+b+c+d\ne0\right)\)Tìm M = \(\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\)
cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh: \(\frac{\left(a-b\right)^2}{\left(c+d\right)^2}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
Cho a,b,c là các số hữu tỉ khác 0 sao cho:\(\frac{a+b+c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)Tính giá trị bằng số của biểu thức M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho a ; b ; c là các số hữu tỉ khác 0 sao cho \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
Tính M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Tính :
\(\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\frac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}\)