Đặt \(u=x^2+x+1\Rightarrow du=\left(2x+1\right)dx\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=3\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^3_1\dfrac{du}{u}=ln\left|u\right||^3_1=ln3-ln1=ln3\)
Đặt \(u=x^2+x+1\Rightarrow du=\left(2x+1\right)dx\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=3\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^3_1\dfrac{du}{u}=ln\left|u\right||^3_1=ln3-ln1=ln3\)
Bài tập: Tính.
b, \(\int\limits^{\dfrac{\pi}{6}}_0cos2xdx\) d, \(\int\limits^2_1\dfrac{dx}{\left(2x-1\right)^2}\)
c, \(\int\limits^1_{-1}\left(2x+1\right)^3dx\)
Bài tập 1: Tính.
a, \(\int\limits^{\dfrac{\pi}{2}}_0\left(2-x\right).sinxdx\)
b, \(\int\limits^{\pi}_0sin2x.cos^22xdx\)
c, \(\int\limits^1_0x.e^x.dx\)
Bài tập 2: a, Tìm giá trị lớn nhất, giá trị nhỏ nhất f = \(3-\dfrac{10}{x+3}\) / [-2 : 5]
b, Tính I = \(\int\limits^{\pi}_0\left(2x-3\right)cosxdx\)
Khảo sát sự hội tụ phân kỳ của tích phân suy rộng
\(\int\limits^{\infty}_0\dfrac{\ln\left(\sqrt[3]{1+\dfrac{3}{4}x^{200}}\right)}{x^2}dx\)
Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên \(R\) và thoả mãn \(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\frac{f\left(x\right)}{f’\left(x\right)}dx=\int\limits^1_0\frac{\left(f\left(x\right)\right)^2}{xf\left(x\right)}dx=6\int\limits^{\frac{3}{2}}_{\frac{1}{2}}\left(f\left(x\right)\right)^2-f’\left(x\right)dx\)
Khi này tính \(f\left(cos\left(f\left(\pi\right)\right)\right)+f‘\left(x\right)\) bằng:
a) 0
b) 1
c) 2
d) -1
Câu 2: Cho cấp số cộng có \(u_1=2\) và \(u_7=23\) .
a) Xác định công thức tổng quát của cấp số cộng trên
b) Tính \(S=u_1+\left(u_2+u_4+u_6+...+u_{20}\right)\)
c) Cho \(u_5+u_6+...+u_{12}=u_{24}+u_{26}+...+u_{40}-m\)Tìm giá trị \(m\) theo các số hạng của cấp số cộng trên.
Câu 3: Một số điện thoại của công ty A có dạng \(1900abcxyz\). Hỏi xác suất là bao nhiêu để thoả mãn các trường hợp sau:
TH1: số \(a,b,c\) lập thành một cấp số cộng với công sai là 4 và chia hết cho 3 và thoả mãn tổng ba số \(x,y,z\) lớn hơn tổng \(a,b,c\) 2 đơn vị và chia hết 2.
TH2: Các chữ số thoả mãn \(x+a=y+b=z+c\)
TH3: Các chữ số thoả mãn \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và đôi một khác nhau
TH4: Các chữ số thoả mản \(x.y.z=a.b.c\) và đôi một khác nhau
1.Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị nhỏ nhất của hàm số y = -\(\left|x^3-3x+m\right|\) trên đoạn [0,2] bằng -3 .Tổng tất cả các phần tử của S là:
A.1 B.2 C.0 D.6
2.Hỏi có bao nhiêu số nguyên dương m để hàm số y = \(-\left(m^2-1\right)^3-\left(m-1\right)x^2+x-7\) đồng biến trên khoảng \(\left(-\infty,+\infty\right)\)
A.1 B.2 C.0 D.3
3.Biết I = \(\int\limits^2_1\dfrac{dx}{\left(2x+2\right)\sqrt{x}+2x\sqrt{x+1}}\)=\(\dfrac{\sqrt{a}-\sqrt{b}-c}{2}\) với a,b,c là các số nguyên dương . Tính P = a-b+c
4.Cho số phức z thỏa mãn : \(\left|z-3+4i\right|=2\) , w =2z+1-i .Khi đó \(\left|w\right|\) có giá trị lớn nhất là?
Bài tập 3: Tính thể tích vật thể được giới hạn.
b, \(y=-x^2+2x+3,y=\dfrac{1}{2}x,x+\dfrac{1}{2}\)
Bài tập 3: Tính thể tích vật thể được giới hạn.
b, \(y=-x^2+2x+3,y=\dfrac{1}{2}x,x+\dfrac{1}{2}\)
Bài tập 2: Tính thể tích vật thể được giới hạn.
a, \(y=cosx,y=0,x=\pi,x=0\)
b, \(y=-x^2+2x+3,y=\dfrac{1}{2}x,x+\dfrac{1}{2}\)
c, \(y=2-x-x^2,y=0\)