Chứng minh phản chứng
a) Với n là số tự nhiên, n2 chia hết cho 2 thì n cũng chia hết cho 2 .
b) Với n là số tự nhiên,n3 chia hết cho 3 thì n cũng chia hết cho 3 .
c) Nếu a+b < 2 thì một trong hai số a và b nhỏ hơn 1.
chứng minh với n là 1 một số tự nhiên thoả mãn \(n^2\)chia hết cho 3 thì n chia hết cho 3
mọi người giúp mình với!!!
Chứng minh rằng với mọi n nguyên dương thì \(^{13^n}\)-1 chia hết cho 12
GIÚP MÌNH GIẢI CÁC BÀI TẬP NÀY VỚI Ạ !
Câu 1/ Chứng minh rằng với mọi số tự nhiên n , n3 chia hết cho 3 thì n chia hết cho 3.
Câu 2/Cho tam thức f(x) = ax2 + bx +c =0 .Chứng minh rằng nếu tồn tại số thực α sao cho a.f(α) ≤ 0 thì phương trình f(x)=0 luôn có nghiệm .
Câu 3/ Chứng minh rằng một ta giác có đường trung tuyến vừa là phân giác xuất phát từ một đỉnh là tam giác cân tại đỉnh đó.
Chứng minh bằng phương pháp phản chứng định lý : Với mọi số nguyên dương n, nếu n2+4n+2 chia hết cho 4 thì n chia hết cho 4 .
dùng phưng pháp chứng minh phản chúng để chứng minh
a. với n là số nguyên dương, nếu n2 chia hết cho 3 thì n chia hết cho 3
b. chứng minh \(\sqrt{2}\) là số vô tỉ
c. với n là số nguyên dương, nếu n2 là số lẻ thì n là số lẻ
Chứng minh rằng: Với mọi n thuộc N : Nếu \(n^2\) chia hết cho 5 thì n chia hết cho 5
Chứng minh định lí sau bằng phương pháp phản chứng : Nếu n2 không chia hết cho 3 thì n cũng không chia hết cho 3
Chứng minh bằng phương pháp phản chứng: nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả 2 số đó phải chia hết cho 3