Chứng minh phản chứng
a) Với n là số tự nhiên, n2 chia hết cho 2 thì n cũng chia hết cho 2 .
b) Với n là số tự nhiên,n3 chia hết cho 3 thì n cũng chia hết cho 3 .
c) Nếu a+b < 2 thì một trong hai số a và b nhỏ hơn 1.
CMR:
a) Với mọi số nguyên n thì n3 - n chia hết cho 3
b) Với mọi số nguyên n thì n(n-1)(2n-1) chia hết cho 6
Giải giúp mình với
Bài chứng minh rằng với mọi số tự nhiên n và n^3 chia hết cho 3 thì N chia hết cho 3
Chứng minh phản chứng ạ
Nếu với mọi n thuộc N : n^2 - 1 không chia hết cho 24 thì n chẵn hoặc n chia hết cho 3
Chứng minh rằng với mọi n nguyên dương thì \(^{13^n}\)-1 chia hết cho 12
"n chia hết cho 3", với n là số tự nhiên. Đây có phải mệnh đề hay không? Nếu là mệnh đề thì nó đúng hay sai?
CMR :
Nếu với mọi n thuộc N : n2 - 1 ko chia hết cho 24 thì n chẵn hoặc n chia hết cho 3
Chứng minh bằng phương pháp phản chứng định lý : Với mọi số nguyên dương n, nếu n2+4n+2 chia hết cho 4 thì n chia hết cho 4 .
GIÚP MÌNH GIẢI CÁC BÀI TẬP NÀY VỚI Ạ !
Câu 1/ Chứng minh rằng với mọi số tự nhiên n , n3 chia hết cho 3 thì n chia hết cho 3.
Câu 2/Cho tam thức f(x) = ax2 + bx +c =0 .Chứng minh rằng nếu tồn tại số thực α sao cho a.f(α) ≤ 0 thì phương trình f(x)=0 luôn có nghiệm .
Câu 3/ Chứng minh rằng một ta giác có đường trung tuyến vừa là phân giác xuất phát từ một đỉnh là tam giác cân tại đỉnh đó.