a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AB*AF=AC*AE
b: Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC tại D
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AB*AF=AC*AE
b: Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC tại D
Câu 6 (3 điểm) Cho tam giác ABC nhọn có AB < AC. Kẻ 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh DABE ∽ DACF và AE. AC = AF. AB
b) Kẻ AH cắt BC tại D. Chứng minh AD vuông góc BC và góc ADF bằng góc ABH
ae hãy cíu tui
Cho tam giác vuông ABC tại A ( AB < AC) ,E là trung điểm của BC. Kẻ EF vuông góc với AB tại F, ED vuông góc với AC tại D. Gọi O giao điểm của AE và DF.
a) Chứng minh tứ giác ADEF là hình chữ nhật
b) Gọi K là điểm đối xứng của E qua D.Chứng minh tứ giác AECK hình thoi
c) Chứng minh rằng ba điểm B,O,K thằng hàng/Kẻ EM vuông góc với AK tại M.Chứng minh rằng DMF = 90 độ
d) Kéo dài BD cắt KC tại I, cho AB = 3cm , AC = 4cm.Tính độ dài KI
Cho tam giác ABC vuông tại A có đường cao AH ( H thuộc BC)
a) Chứng minh : tam giác ABH đồng dạng tam giác CBA sau đó suy ra AB2= BH.BC
b) Chứng minh AH2=BH.CH
C) Gọi M là trung điểm của BH, kẻ CK vuông góc với AM tại K, CK cắt AH tại I. Chứng minh IA=IH
bài 5 cho tam giác ABC vuông tại A. kẻ đường cao AH. Biết AB=15cm, AC=20cm
a) Chứng minh tam giác AHB và tam giác CAB là hai tam giác đồng dạng
b) Tính BC, AH.
C) Gọi M là trung điểm cạnh BC. Tính diện tích tam giác AHM.
cho tam giác ABC vuông tại A. kẻ đường cao AH. Biết AB=15cm, AC=20cm.
a) chứng minh tam giác AHB và tam giác CAB là hai tam giác đồng dạng
b) tính BC, AH
c) gọi M là trung điểm cạch BC. tính diện tích tam gác AHM.
Cho tam giác ABC vuông tại A biết AB = 8 cm , AC = 6cm , CE là tia phân giác của góc ACB (E thuộc AB )
a) Tính độ dài đoạn thẳng AE
b) Kẻ AH vuông góc BC (H thuộc BC )
Chứng minh : ΔABC đồng dạng ΔHAC
c) Gọi F là giao điểm của CE và AH
Chứng minh: AE . CE = CE . HF
d)Từ B kẻ đường thẳng song song với CF cắt AF tại K.
CMR: AK = AB
Bài 6: Cho ΔABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Từ M lần lượt kẻ MH
vuông góc với AB tại H, MK vuông góc với AC tại K.
a) Chứng minh tứ giác AKMH là hình chữ nhật
b) Gọi N là điểm đối xứng của M qua K. Chứng minh tứ giác AMCN là hình thoi
c) Gọi P là hình chiếu của H lên AM; O, E, Q lần lượt là trung điểm của HP, PM và
AK. Chứng minh: HE vuông góc với EQ
Bài 5: (3,25 điểm)
Cho ΔABC vuông tại A. Từ trung điểm I của cạnh BC, kẻ các đường thẳng song song với
cạnh AB cắt AC tại N và song song với cạnh AC cắt AB tại M.
a) Giả sử AB = 88cm và AC =105cm. Tính AI
b) Chứng minh tứ giác AMIN là hình chữ nhật.
c) Lấy điểm E đối xứng với điểm I qua M. Chứng minh tứ giác AEBI là hình thoi
d) Gọi O là giao điểm của AI và MN. Từ O vẽ đường thẳng song song ME cắt EA tại
K và BC tại Q. Chứng minh K là trung điểm của AE và
1
4IQBC
Câu 1 : cho tam giác Abc nhọn (AB ‹ AC) có hai đường cao BD VÀ cE cắt nhau tại H.
a) chứng minh: tam giác ABD ~ tam giác ACE.
b) chứng minh: HD.HB = HE.HC
c) AH cắt BC tại F. Kẻ FI vuônh góc AC tại I. Chứng minh \(\dfrac{IF}{IC}=\dfrac{FA}{FC}\)