\(\left|x+\dfrac{11}{17}\right|\ge0\)
\(\left|x+\dfrac{2}{17}\right|\ge0\)
\(\left|x+\dfrac{4}{17}\right|\ge0\)
\(\Leftrightarrow\left|x+\dfrac{11}{17}\right|+\left|x+\dfrac{2}{17}\right|+\left|x+\dfrac{4}{17}\right|\ge0\)
\(\Leftrightarrow x+\dfrac{11}{17}+x+\dfrac{2}{17}+x+\dfrac{4}{17}=4x\)
\(3x+\left(\dfrac{11}{17}+\dfrac{2}{17}+\dfrac{4}{17}\right)=4x\)
\(3x+1=4x\Leftrightarrow4x-3x=1\Leftrightarrow x=1\)
Vậy...
Ta có: \(\left\{{}\begin{matrix}\left|x+\dfrac{11}{17}\right|\ge0\\\left|x+\dfrac{2}{17}\right|\ge0\\\left|x+\dfrac{4}{17}\right|\ge0\end{matrix}\right.\Leftrightarrow\left|x+\dfrac{11}{17}\right|+\left|x+\dfrac{2}{17}\right|+\left|x+\dfrac{4}{17}\right|\ge0\)
\(\Leftrightarrow4x\ge0\Leftrightarrow x\ge0\)
\(\Leftrightarrow x+\dfrac{11}{17}+x+\dfrac{2}{17}+x+\dfrac{4}{17}=4x\)
\(\Leftrightarrow3x+1=4x\)
\(\Leftrightarrow x=1\)
Vậy x = 1