Bài 4: Tính chất ba đường trung tuyến của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Pùi Hoàng

Bài 5: Cho tam giác ABC có ba góc nhọn. Ba đường trung tuyến AD, BE, CF cắt nhau tại G. Trên tia đối của tia DA lấy điểm M sao cho DG = DM. Trên tia đối của tia EB lấy điểm N sao cho EG = EN, trên tia đối của tia FC lấy điểm P sao cho FG = FP. a) Chứng minh CM // BE. b) Gọi I là trung điểm BG. Chứng minh P, I, M thẳng hàng. c) Gọi K là giao của MN và CG. Chứng minh K là trung điểm MN và GC. d) EF = IK và EF//IK. e) Chứng minh G là trọng tâm ∆MNP. f) Chứng minh PN // BC, PN = PC. g) Chứng minh ∆ABC = ∆MNP. h) Đường thẳng PE cắt BC tại H. Chứng minh BC = 1/2 CH. i) Chứng minh S GDE = 1/2 S GDC= 1/3 S EDC= 1/4 S GAB =1/6 S ABE= 1 S ABDE

Nguyễn Lê Phước Thịnh
4 tháng 4 2021 lúc 14:07

a) Xét ΔGDB và ΔMDC có 

DG=DM(gt)

\(\widehat{GDB}=\widehat{MDC}\)(hai góc đối đỉnh)

DB=DC(D là trung điểm của BC)

Do đó: ΔGDB=ΔMDC(c-g-c)

Suy ra: \(\widehat{DGB}=\widehat{DMC}\)(hai góc tương ứng)

mà \(\widehat{DGB}\) và \(\widehat{DMC}\) là hai góc ở vị trí so le trong

nên BG//MC(Dấu hiệu nhận biết hai đường thẳng song song)

hay CM//BE(Đpcm)


Các câu hỏi tương tự
Nguyễn Ngọc Thuỳ Dương
Xem chi tiết
Thuỳ Dung
Xem chi tiết
29. Đoàn Phương Nghi
Xem chi tiết
Trần Hương Lan
Xem chi tiết
Ex VBCB
Xem chi tiết
Luger Girl
Xem chi tiết
Le Anh Thu Tran
Xem chi tiết
phóng khoáng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết