bài 5: Cho đường tròn (O;R) đường kính AB và điểm M thuộc đường (O) (MA< MB, M khác A và B). Kẻ MH vuông góc với AB tại H
a) Chứng minh tam giác ABM vuông. Gỉa sử MA=3cm, MB=4cm. Tính MH
b) Tiếp tuyến tại A của đường tròn (O) cắt tia BM ở C. Gọi N là trung điểm của AC. Chứng minh đường thẳng NM là tiếp tuyến của đường tròn (O)
c) Tiếp tuyến tại B của (O) cắt đường thẳng MN tại D. Chứng minh NA.BD=R^2
d) Chứng minh OC vuông góc AD
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó ΔAMB vuông tại M
\(AB=\sqrt{3^2+4^2}=5\left(cm\right)\)
MH=3*4/5=2,4cm
b: Ta có; ΔAMC vuông tại M
mà MN là trung tuyến
nên MN=AN
Xét ΔNAO và ΔNMO có
OA=OM
NA=NM
NO chung
Do đo; ΔNAO=ΔNMO
=>góc NMO=90 độ
=>NM là tiếp tuyến của (O)
=>ON là phân giác của góc MOA(1)
c: Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc NOD=1/2*180=90 độ
NA*BD=NM*MD=OM^2=R^2