Bài 5 : Cho ΔABC cân tại A có BAC ̂ =40 do .
a) So sánh AB và BC.
b) Đường phân giác AD và đường trung tuyến BE của ΔABC cắt nhau tại H. Chứng minh ΔADB=ΔADC.
c) Chứng minh CH đi qua trung điểm của cạnh AB.
d) Qua B dựng đường vuông góc với AB và qua C dựng đường vuông góc với AC. hai đường này cắt nhau tại K. Chứng minh ba điểm A, D, K thẳng hàng.
a) Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)
hay \(\widehat{ACB}=\frac{180^0-40^0}{2}=70^0\)
Xét ΔABC có
\(\widehat{ACB}>\widehat{BAC}\left(70^0>40^0\right)\)
mà cạnh đối diện với \(\widehat{ACB}\) là AB
và cạnh đối diện với \(\widehat{BAC}\) là BC
nên AB>BC(Định lí 2 về quan hệ giữa góc và cạnh trong tam giác)
b) Xét ΔADB và ΔADC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD là cạnh chung
Do đó: ΔADB=ΔADC(c-g-c)
c) Ta có: ΔADB=ΔADC(cmt)
⇒DB=DC(hai cạnh tương ứng)
mà B,D,C thẳng hàng
nên D là trung điểm của BC
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh BC(D là trung điểm của BC)
BE là đường trung tuyến ứng với cạnh AC(gt)
\(AD\cap BE=\left\{H\right\}\)
Do đó: H là trọng tâm của ΔABC(tính chất ba đường trung tuyến của tam giác)
hay CH đi qua trung điểm của cạnh AB(đpcm)
d) Ta có: \(\widehat{ABC}+\widehat{KBC}=\widehat{ABK}=90^0\)(tia BC nằm giữa hai tia BA,BK)
\(\widehat{ACB}+\widehat{KCB}=\widehat{ACK}=90^0\)(tia CB nằm giữa hai tia CA,CK)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{KBC}=\widehat{KCB}\)
Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)
nên ΔKBC cân tại K(định lí đảo của tam giác cân)
⇔KB=KC
hay K nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(2)
Ta có: BD=CD(cmt)
nên D nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(3)
Từ (1), (2) và (3) suy ra A,D,K thẳng hàng(đpcm)