Đại số lớp 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhung Hoàng

Bài 4: Với những giá trị nguyên nào của n thì phân số sau tối giản:

a. \(\dfrac{n+4}{n+3}\) b. \(\dfrac{n-1}{n-2}\) c. \(\dfrac{2n+3}{4n+7}\) d. \(\dfrac{n^3+2n}{n^4+3n^2+1}\)

Quốc Đạt
31 tháng 7 2017 lúc 11:43

a) \(\dfrac{n+4}{n+3}=\dfrac{n+3+1}{n+3}=\dfrac{n+3}{n+3}+\dfrac{1}{n+3}=1+\dfrac{1}{n+3}\)

=> n+3 \(\in\) Ư(1) = {-1,1}

Ta có : n+3 = -1

n = (-1)-3

n = -4

n+3 = 1

n = 1-3

= -2

Vậy n = -4 hoặc -2

b) \(\dfrac{n-1}{n-2}=\dfrac{n-2+1}{n-2}=\dfrac{n-2}{n-2}+\dfrac{1}{n-2}=1+\dfrac{1}{n-2}\)

=> n-2 \(\in\) Ư(1) = {-1,1}

Ta có : +) n-2= -1

n=(-1)+2

n=1

+) n-2 = 1

n=1+2

n=3

Vậy n=1 hoặc 3

c) \(\dfrac{2n+3}{4n+7}\)

Gọi ƯCLN(2n+3,4n+7) = d

Ta có : 2n+3\(⋮\)d => 2(2n+3) = 4n+6 \(⋮\) d

4n+7 \(⋮\) d

=> (4n+6)-(4n+7) \(⋮\) d

=> -1 \(⋮\) d

=> d = Ư(-1) = {-1,1}

Để phân số tối giản

=> ƯC(4n+6,4n+7)=1

=> d = -1 hoặc 1

d) \(\dfrac{n^3+2n}{n^4+3n^2+1}\)

Gọi d là ƯCLN của n3+2n và n4+3n2+1

=> n3 + 2n chia hết cho d và n4 + 3n2 + 1 \(⋮\) d

=> n(n3 + 2n) = n4 + 2n2 \(⋮\) d

=> (n4 + 3n2 + 1) -(n4 + 2n2) = n2 + 1 \(⋮\) d

=> (n2 + 1)2 = n4 + 2n2 + 1 \(⋮\) d

=> (n4 + 3n2 + 1) - ( n4 + 2n2 + 1 ) = n2 \(⋮\) d

=> n2 + 1 - n2 = 1 \(⋮\) d

=> d = 1 hoặc d = - 1 Vậy phân số ban đầu là tối giản

Các câu hỏi tương tự
Ngô Thị Phương Anh
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
England
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
le tra my
Xem chi tiết
Nguyễn Thành Đăng
Xem chi tiết
fjjhdjhjdjfjd
Xem chi tiết
Đặng Hoài An
Xem chi tiết
Quỳnh Hoa Nguyễn Thị
Xem chi tiết