a) \(\dfrac{n+4}{n+3}=\dfrac{n+3+1}{n+3}=\dfrac{n+3}{n+3}+\dfrac{1}{n+3}=1+\dfrac{1}{n+3}\)
=> n+3 \(\in\) Ư(1) = {-1,1}
Ta có : n+3 = -1
n = (-1)-3
n = -4
n+3 = 1
n = 1-3
= -2
Vậy n = -4 hoặc -2
b) \(\dfrac{n-1}{n-2}=\dfrac{n-2+1}{n-2}=\dfrac{n-2}{n-2}+\dfrac{1}{n-2}=1+\dfrac{1}{n-2}\)
=> n-2 \(\in\) Ư(1) = {-1,1}
Ta có : +) n-2= -1
n=(-1)+2
n=1
+) n-2 = 1
n=1+2
n=3
Vậy n=1 hoặc 3
c) \(\dfrac{2n+3}{4n+7}\)
Gọi ƯCLN(2n+3,4n+7) = d
Ta có : 2n+3\(⋮\)d => 2(2n+3) = 4n+6 \(⋮\) d
4n+7 \(⋮\) d
=> (4n+6)-(4n+7) \(⋮\) d
=> -1 \(⋮\) d
=> d = Ư(-1) = {-1,1}
Để phân số tối giản
=> ƯC(4n+6,4n+7)=1
=> d = -1 hoặc 1
d) \(\dfrac{n^3+2n}{n^4+3n^2+1}\)
Gọi d là ƯCLN của n3+2n và n4+3n2+1
=> n3 + 2n chia hết cho d và n4 + 3n2 + 1 \(⋮\) d
=> n(n3 + 2n) = n4 + 2n2 \(⋮\) d
=> (n4 + 3n2 + 1) -(n4 + 2n2) = n2 + 1 \(⋮\) d
=> (n2 + 1)2 = n4 + 2n2 + 1 \(⋮\) d
=> (n4 + 3n2 + 1) - ( n4 + 2n2 + 1 ) = n2 \(⋮\) d
=> n2 + 1 - n2 = 1 \(⋮\) d
=> d = 1 hoặc d = - 1 Vậy phân số ban đầu là tối giản