Gọi d là ước chung nguyên tố của 2n + 3 và 4n + 1
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\4n+1⋮d\end{matrix}\right.\)
+) Vì : \(2n+3⋮d;2\in N\)
\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\)
Mà : \(4n+1⋮d\)
\(\Rightarrow\left(4n+6\right)-\left(4n+1\right)⋮d\)
\(\Rightarrow4n+6-4n-1⋮d\Rightarrow5⋮d\)
\(\Rightarrow\) d là ước của 5 ; d nguyên tố
\(\Rightarrow d=5\)
Với \(d=5\Rightarrow4n+1⋮5\)
\(\Rightarrow5n-n+1⋮5\Rightarrow5n-\left(n-1\right)⋮5\)
Vì : \(n\in N\Rightarrow5n⋮5\)
\(\Rightarrow n-1⋮5\Rightarrow n-1=5k\Rightarrow n=5k+1\)
Thử lại : n = 5k + 1 ( \(k\in N\))
\(2n+3=2\left(5k+1\right)+3=10k+5=5\left(2k+1\right)⋮5\)
\(4n+1=4\left(5k+1\right)+1=20k+5=5\left(4k+1\right)⋮5\)
\(\Rightarrow\) Với n = 5k + 1 thì phân số trên rút gọn được
\(\Rightarrow n\ne5k+1\) thì phân số trên tối giản
Vậy \(n\ne5k+1\)
Hai câu cuối tương tự