đặt \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=a\)
\(\Rightarrow z=\frac{4y-2a}{3}\Rightarrow\frac{z}{4}=\frac{y-2a}{3}\)
\(x=\frac{4a+2y}{3}\Rightarrow\frac{x}{2}=\frac{2a+y}{3}\)
\(\left\{\begin{matrix}6x-4y=16y-12z\\4z-8x=12y-9z\\9x-6y=8z-16x\end{matrix}\right.\)\(\Leftrightarrow\) \(\left\{\begin{matrix}6x-20y+12z=0\\-8x-12y+13z=0\end{matrix}\right.\)
\(\left\{\begin{matrix}48x-160y+96z=0\\-48x-72y+78z=0\end{matrix}\right.\)
\(-232y+174z=0\Rightarrow174z=232y\)
\(\Leftrightarrow\frac{174z}{174.4}=\frac{232y}{174.4}\Leftrightarrow\frac{z}{4}=\frac{y}{3}\left(1\right)\)
\(\left\{\begin{matrix}9x-6y=8z-16x\\12y-9z=4z-8x\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}25x-6y-8z=0\\8x+12y-13z=0\end{matrix}\right.\)
\(\left\{\begin{matrix}50x-12y-16z=0\\8x+12y-13z=0\end{matrix}\right.\)
\(58x-29z=0\Leftrightarrow58x=29z\Leftrightarrow\frac{58x}{58.2}=\frac{29z}{58.2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{z}{4}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)