Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh nguyen phan khanh

Cho x,y,z>0 và\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}\)

Tính P=\(\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)

soyeon_Tiểubàng giải
26 tháng 2 2017 lúc 21:14

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}=\)\(=\frac{\left(y-2x+4z\right)+\left(z-2y+4x\right)+\left(x-2z+4y\right)}{2x+2y+2z}=\frac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{3}{2}\)

\(\Rightarrow\left\{\begin{matrix}2\left(y-2x+4z\right)=6x\\2\left(z-2y+4x\right)=6y\\2\left(x-2z+4y\right)=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y-2x+4z=3x\\z-2y+4x=3y\\x-2z+4y=3z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+4z=5x\\z+4x=5y\\x+4y=5z\end{matrix}\right.\)

\(P=\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)

\(P=\frac{4y+x}{2y}.\frac{4z+y}{2z}.\frac{4x+z}{2x}=\frac{5z}{2y}.\frac{5x}{2z}.\frac{5y}{2x}=\frac{125}{8}\)


Các câu hỏi tương tự
Trần Minh Hưng
Xem chi tiết
Nguyen Thi Thanh Thao
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Hiền Thương
Xem chi tiết
Nguyễn Thị Anh Thư
Xem chi tiết
Thuyết Dương
Xem chi tiết
Diệp Thiên Giai
Xem chi tiết
Nguyễn Thị Thùy Linh
Xem chi tiết
Nguyen Thi Thanh Thao
Xem chi tiết