Giải:
Ta có: \(\frac{2x+3}{-x+5}=\frac{3}{4}\) ⇔ 4(2x + 3) = 3(-x + 5) ⇔ 8x + 12 = -3x - 15 ⇔ 11x = -27 ⇔ x =\(\frac{-27}{11}\)
Vậy nghiệm của phương trình là x =\(\frac{-27}{11}\).
Giải:
Ta có: \(\frac{2x+3}{-x+5}=\frac{3}{4}\) ⇔ 4(2x + 3) = 3(-x + 5) ⇔ 8x + 12 = -3x - 15 ⇔ 11x = -27 ⇔ x =\(\frac{-27}{11}\)
Vậy nghiệm của phương trình là x =\(\frac{-27}{11}\).
Một phân thức có giá trị bằng 0 khi giá trị của tử thức bằng 0 còn giá trị của mẫu thức khác 0. Ví dụ giá trị của phân thức \(\dfrac{x^2-25}{x+1}=0\) khi \(x^2-25=0\) và \(x+1\ne0\) hay \(\left(x-5\right)\left(x+5\right)=0\) và \(x\ne-1\)
Vậy giá trị của phân thức này bằng 0 khi \(x=\pm5\)
Tìm các giá trị của x để giá trị của mỗi phân thức sau bằng 0 :
a) \(\dfrac{98x^2-2}{x-2}\)
b) \(\dfrac{3x-2}{x^2+2x+1}\)
Cho biểu thức:
B = (\(\dfrac{x+1}{2x-2}\) + \(\dfrac{3}{x^2-1}\) - \(\dfrac{x+3}{2x+2}\)) . \(\dfrac{4x^2-4}{5}\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) C/m rằng: khi giá trị của x để giá trị của biểu thức được xác định.
Tìm giá trị của x để giá trị của các biểu thức sau bằng 0 :
a) \(\dfrac{2x-3}{\dfrac{x-1}{x+2}}\)
b) \(\dfrac{\dfrac{2x^2+1}{x}}{x-1}\)
c) \(\dfrac{x^2-25}{\dfrac{x^2-10x+25}{x}}\)
d) \(\dfrac{x^2-25}{\dfrac{x^2+10x+25}{x-5}}\)
a) \(\dfrac{x-2}{x^2+8x}\)
b) \(\dfrac{25x^2-1}{16x^2-25}\)
c) \(\dfrac{x^2+1}{2x^2-28x+98}\)
d) \(\dfrac{2x+3}{9-\left(x+3\right)^2}\)
1. Với các giá trị nào của x thì biểu thức vô nghĩa.
2. Tìm tập xác định của các phân thức trên.
3. Với giá trị nào của x, giá trị của các phân thức trên bằng 0?
Bài 2. Cho biểu thức P= \(\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tìm giá trị của x để P= -4
d) Tìm các giá trị nguyên của x để \(\frac{1}{P}\)nhận giá trị nguyên
e) Với x> 0, tìm giá trị nhỏ nhất của biểu thức Q= P+\(\frac{x+25}{x+5}\)
Cho hai biểu thức:
A = \(\dfrac{x+6}{5-x}\) và B = \(\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}+\dfrac{x^2-8x-25}{2x^2-10x}\)
a) Tính giá trị biểu thức A với x thỏa mãn \(x^2+5x=0\)
b) Chứng minh: B = \(\dfrac{x-2}{x-5}\)
c) Tìm giá trị của x để \(B-A=0\)
d) Tìm tất cả giá trị nguyên của x để biểu thức A có giá trị nguyên.
Bài 1: Cho P=\(\dfrac{1}{x+5}\)+\(\dfrac{2}{x-5}-\dfrac{2x+10}{\left(x+5\right)\left(x-5\right)}\)
a) Tìm điều kiện xác định của P
b) Rút gọn P
c) Tìm x để P=-3
d) Tìm các giá trị nguyên của x để P nhận giá trị nguyên
Bài 2: Tìm x để các phân thức sau có giá trị bằng 0
a)\(\dfrac{3x^2+6x+12}{x^3-8}\) b)\(\dfrac{2x-x^2}{x^2-4}\)
Cho biểu thức \(P=\frac{3x-1}{x-1}-\frac{2x+5}{x+3}+\frac{4}{x^2+2x-3}-1\)
a) Rút gọn P
b) Tính giá trị của P với x= 1000
c) Tìm giá trị lớn nhất của \(A=\frac{P}{x-3}\)
Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên
a. \(\frac{x^3-x^2+2}{x-1}\)
b. \(\frac{x^3-2x^2+4}{x-2}\)
c.\(\frac{2x^3+x^2+2x+2}{2x+1}\)