Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi Q là trung điểm của BC và các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh : AH = 2OQ
b) Chứng minh rằng nếu : AB + AC = 2BC thì sinB + sin C = 2sin A
c) Cho BC = \(R\sqrt{2}\), chứng minh : AE * FH + AF * HE = \(R^2\sqrt{2}\)
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp (O) có hai đường cao BF và CE cắt nhau tại H, tia AH cắt cạnh BC tại D,gọi S là giao điểm của hai đường thẳng BC và EF. Đoạn thẳng AS cắt (O) tại M
a) Chứng minh: SE.SF=SB.SC=SM.SA
Cho tam giác ABC nhọn. Vẽ đường cao BD và CE của tam giác, biết D thuộc cạnh AC, E thuộc cạnh AB. CE và BD cắt nhau tại H. Gọi I, K lần lượt là trung điểm của BC và AH. Chứng minh rằng: a) Bốn điểm B, C, E, D cùng thuộc đường tròn tâm I. I. b) Tứ giác IEKD nội tiếp được trong một đường tròn.
Cho tam giác ABC có 3 góc nhọn (AB<BC,AC) nội tiếp (O). Kẻ các đường cao BD,CE cắt nhau tại H (D thuộc AC, E thuộc AB)
a, Chứng minh BCDE là tứ giác nội tiếp
b, Chứng minh DA.DC= DH.DB
c, Vẽ đường tròn tâm H, bán kính HA cắt các tia AB, AC lần lượt tại M,N. Chứng minh OA vuông góc với MN.
d, Các tiếp tuyến tại M,N của (H,HA) cắt nhau tại P. Chứng minh AP đi qua trung điểm của BC.
Cho tam giác nhọn ABC có \(\widehat{B}=45^o\). Vẽ đường tròn đường kính AC có tâm O, đường tròn này cắt BA và BC tại D và E
a) Chứng minh rằng AE = EB
b) Gọi H là giao điểm của CD và EA. Chứng minh rằng đường trung trực của đoạn HE đi qua điểm I của BH
c) Chứng minh BH \(\perp\) AC
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OK vuông góc với BC.(K nằm trên đường thẳng BC)
1) cm 4 điểm O,K,D,E cùng thuộc 1đường tròn
2) gọi H là điểm đối đối xứng với D qua K . cmr tứ giác BDCH là hình bình hành và H LÀ TRỰC TÂM CỦA TAM GIÁC ABC
3) gọi G là trọng tâm tam giác ABC , cmr 3 điểm H,G,O thẳng hàng
Cho tam giác ABC nhọn (AB>AC),nội tiếp đường tròn (O;R).Các tiếp tuyến tại B và C cắt nhau . Gọi H là giao điểm của OM và BC .Từ M kẻ đường thẳng song song với AC,đường thẳng song song cắt tại E và F (E thuộc cung nhỏ BC),cắt BC tại I ,cắt AB tại K.
a)Chứng minh:MO⊥BC và ME.MF=MH.MO
b)Chứng minh rằng tứ giác MBKC là tứ giác nội tiếp.Từ đó suy ra năm điểm M,B,K,O,C cùng thuộc một đường tròn.
Cho đường tròn (O,R), dây BC cố định không đi qua O. Lấy điểm A. Kẻ BD vuông góc AC tại D, CE vuông góc AB tại E. Gọi giao điểm của BD và CE là H. Tia BD cắt đường tròn (O) tại điểm thứ hai là F (F khác B)
a, Chứng minh bốn điểm B,D,C,E cùng thuộc 1 đường tròn
b, chứng minh CA là tia phân giác của HCF
Cho DABC vuông ở A, AB < AC. Vẽ đường cao AH, đường tròn (O) đường kính AH lần lượt cắt AB và AC tại D và E.
A) Chứng tỏ 3 điểm D, O, E thẳng hàng.
B) Chứng minh: tứ giác BDEC nội tiếp.
C) Gọi M là trung điểm của BC. Chứng minh AM ^ DE.