a) Dễ thấy |x-5| = |5-x|
Áp dụng BĐT: |a| + |b| \(\ge\) |a+b| ta có
|x+3| + |5-x| \(\ge\) |x+3+5-x| = 8
=> |x+3| + |5-x| \(\ge\) 8
Dấu "=" xảy ra khi -3 < x < 5
b) Dễ thấy |x-8| = |8-x|; |x-7| = |7-x|
Áp dụng BĐT: |a| + |b| \(\ge\) |a+b| ta có
|x+2| + |8-x| \(\ge\) |x+2+8-x| = 10
=> |x+2| + |8-x| \(\ge\) 10
Dấu "=" xảy ra khi 2 < x < 8
|x+5| + |7-x| \(\ge\) |x+5+7-x| = 12
=> |x+5| + |7-x| \(\ge\) 12
Dấu "=" xảy ra khi -5 < x < 7
Tìm được x trong khoảng 2 < x < 6 và MinB = 12
c) Dễ thấy |x-5| = |5-x|;
Áp dụng BĐT...
ta có : \(\left\{{}\begin{matrix}\left|x+3\right|\ge0\\\left|x-2\right|+\left|5-x\right|\ge3\end{matrix}\right.\)
=> C \(\ge\)3
Dấu "=" xảy ra khi x = 3