Cho hình thang ABCD (AB song song với CD, AB<CD). Đường thẳng song song với AB cắt các cạnh AD, BC lần lượt tại M và N và chia hình thang ABCD thành 2 hình có diện tích bằng nhau. CMR: \(MN^2=\dfrac{AB^2+DC^2}{2}\)
Hình thang ABCD ( AB // CD ) có 2 đường chéo cắt nhau tại O . Đường thẳng qua O và song song với đáy AB cắt các cạnh bên AC , BC theo thứ tự ở M và N .
a ) chứng minh rằng : OM = ON
b ) cmr : \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\)
c ) biết diện tích AOB = 2008 ; diện tích COD = 2009 . tính diện tích ABCD
1.Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F . Chứng minh rằng OE = OF 2.a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S. b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?
Hình thang ABCD (AB // CD) có hai đường chéo cắt nhau tại O. Đường
thẳng qua O và song song với đáy AB cắt các cạnh bên AD, BC theo thứ tự ở M và
N.
a, Chứng minh rằng OM = ON.
b, Chứng minh rằng \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\)
c, Biết SAOB= 20082(đơn vị diện tích); SCOD= 20092(đơn vị diện tích). Tính SABCD
Gọi O là giao điểm của hai đường chéo AC và BD trong hình thang ABCD (AB//CD). Đường thẳng qua O và song song với AB và CD cắt AD và BC lần lượt tại M và N
a, CMR: OM = ON
b, CMR: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c, Biết SAOB = a2, SCOD = b2. Tính SABCD
d, Nếu góc D > góc C > 90 độ. CMR: BD > AC
Cho hình thang ABCD, O là giao điểm của 2 đường chéo, đáy lớn CD. Đường thẳng qua A song song với BC cắt BD ở E và đường thẳng qua B song song với AD cắt đường thẳng AC tại F.
a) CHứng minh: EF song song với AB.
b) Chứng minh: AB^2=EF.CD
c) Gọi S1, S2, S3, S4 theo thứ tự là diện tích các tam giác CAB, OCD, OAD, OBC. Chứng minh: S1.S2=S3.S4
Cho hình thang ABCD (AB//CD), hai đường chéo cắt nhau tại O. Qua O vẽ một đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. CMR:
a, OM = ON
b, 1/AB + 1/CD = 2/MN
c, SAOD . SBOC = SAOB . SCOD
câu c thôi nhá
Cho hình thang ABCD(AB//CD),kẻ O song song AB cắt AD,BC lần lượt tại M,N
a.Cm OM=ON
b.\(\frac{2}{MN}=\frac{1}{AB}+\frac{1}{CD}\)
Các đường chéo AC và BD của tứ giác ABCD cắt nhau tại O. Đường thẳng qua O song song với AD cắt AB tại K và cắt CD tại M. Đường thẳng qua O song song với BC cắt AB tại L và cắt CD tại N. CMR: \(\dfrac{KL}{AB}=\dfrac{MN}{CD}\)