Bài 12. Cho nửa đường tròn (O) đường kính AB = 2R và dây cung AC = R. Gọi K là trung điểm của dây cung CB, qua B dựng tiếp tuyến Bx với (O) cắt tia OK tại D.
a) Chứng minh rằng : \(\Delta\)ABC vuông.
b) Chứng minh rằng : DC là tiếp tuyến của đường tròn (O).
c) Tia OD cắt (O) tại M. Chứng minh rằng : Tứ giác OBMC là hình thoi .
d) Vẽ CH vuông góc với AB tại H và gọi I là trung điểm của cạnh CH. Tiếp tuyến tại A của đường tròn (O) cắt tia BI tại E. Chứng minh rằng ba điểm E, C, D thẳng hàng.
a) Xét (O) có
ΔBAC nội tiếp đường tròn(B,A,C\(\in\)(O))
AB là đường kính(gt)
Do đó: ΔABC vuông tại C(Định lí)