Bài 1: Xác định A\(\cap\)B, A\(\cup\)B, A\B, B/A và biểu diễn kết quả trên trục số
a, A = {\(x\in\) R |x \(\ge\) 1} B = {\(x\in\) R |x \(\le\) 3}
b, A = {\(x\in\) R |x \(\le\) 1} B = {\(x\in\) R |x \(\ge\) 3}
c, A = [1;3] B = (2;+\(\infty\))
d, A = (-1;5) B = [0;6)
Bài 2: Cho A = {\(x\in\) R |x - 2 \(\ge\) 0}, B = {\(x\in\) R |x - 5 > 0}
Tính A\(\cap\)B, A\(\cup\)B, A\B, B\A
Bài 3: Xác định các tập sau
a, \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)\)
b, \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)\)
c, (0;12) \ [5;+\(\infty\))
d, R \ [-1;1)
Gíup với ạ!!!
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)