Câu 1:
\(=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(1-\sqrt{2}\right)}+\dfrac{\sqrt{7}+\sqrt{5}}{2}\right):\sqrt{5}\)
\(=\dfrac{-\sqrt{7}+\sqrt{7}+\sqrt{5}}{2}\cdot\dfrac{1}{\sqrt{5}}=\dfrac{1}{2}\)
Câu 1:
\(=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(1-\sqrt{2}\right)}+\dfrac{\sqrt{7}+\sqrt{5}}{2}\right):\sqrt{5}\)
\(=\dfrac{-\sqrt{7}+\sqrt{7}+\sqrt{5}}{2}\cdot\dfrac{1}{\sqrt{5}}=\dfrac{1}{2}\)
a) Tính giá trị của biểu thức: A=\(\dfrac{\sqrt{\dfrac{5}{2}-\sqrt{6}}+\sqrt{\dfrac{5}{2}+\sqrt{6}}}{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}\)
b) Cho biểu thức B=\(\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right)\times\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{\sqrt{x}+x}{\sqrt{x}+1}\right)\)(với x≥0;x≠1)
Rút gọn B rồi tìm điều kiện của x để B<0
P = \(\dfrac{\sqrt{a}-1}{3\sqrt{a}+\left(\sqrt{a}-1\right)^2}-\dfrac{6-2\left(\sqrt{a}-1\right)^2}{a\sqrt{a}-1}+\dfrac{2}{\sqrt{a}-1}\)
Rút gon P
Tìm x để P=1
Tính P tại x=\(7-2\sqrt{6}\)
P=\(\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
Rút gọn P
Tìm x để P=5
Tìm x để p>0
Tính P tại x=5-2\(\sqrt{6}\)
P =\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
Rút gọn P
Tìm x để P=3
Tính P tại x=7+\(2\sqrt{3}\)
tìm x để P >3
Cho biểu thức :
A = \(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{1-x}{\sqrt{x}}\right)^2\)
với x > O , x#1.
a) Rút gọn.
b) Tìm giá trị lớn nhất của A
bài 1 : a) y= \(\dfrac{x}{x-2}\) b)y=\(\sqrt{1-x}\) c)y=\(\sqrt{x^2+2x+2}\) d)y=\(\sqrt{4-3x}+\dfrac{1}{x}\) bài 2 : xét tính đồng biến , nghịch biến a)y = f(x)=2x+1 b)y=\(\left(\dfrac{2+\sqrt{3}}{2-\sqrt{3}}+\dfrac{2-\sqrt{3}}{2+\sqrt{3}}\right)x-5\)
a,Cho a +b =2 C/m \(B=a^5+b^5\ge2\)
b,Cho các số dường a,b,x,y t/m ĐK \(x^2+y^2=1\) và \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\).C/m \(\dfrac{x}{\sqrt{a}}+\dfrac{\sqrt{b}}{y}\ge2\)
c,Với x,y là các số dương t/m: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\) .Tính \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
d,Chứng minh A=\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là 1 số tự nhiên
cho phương trình \(x^2-\left(2m+3\right)x+2m+5=0\)
tìm m để phương trình có 2 nghiệm dương phân biệt x1;x2 thỏa mãn \(\dfrac{1}{\sqrt{x1}}+\dfrac{1}{\sqrt{x2}}=\dfrac{4}{3}\)
\(\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}+\dfrac{x+2}{x\sqrt{x}-1} rútgọnBT\) + tìm x để BT = \(\dfrac{2}{7}\)