a) Ta có: \(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
\(=\left(\dfrac{x+1}{x+1}+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{x+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{x+\sqrt{x}+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(\sqrt{x}-1\right)}{x-2\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}+1}{1}\cdot\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
b) Để \(P=5\) thì \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}=5\)
\(\Leftrightarrow x+\sqrt{x}+1=5\left(\sqrt{x}-1\right)\)
\(\Leftrightarrow x+\sqrt{x}+1=5\sqrt{x}-5\)
\(\Leftrightarrow x+\sqrt{x}+1-5\sqrt{x}+5=0\)
\(\Leftrightarrow x-4\sqrt{x}+6=0\)
\(\Leftrightarrow x-2\cdot\sqrt{x}\cdot2+4+2=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+2=0\)(Vô lý)
Vậy: Không có giá trị nào của x để P=5