ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
a) Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=x-\sqrt{x}-2x-\sqrt{x}+2\sqrt{x}+2\)
\(=2-x\)
b) Để P=3 thì 2-x=3
hay x=-1(Không thỏa mãn ĐKXĐ)
Vậy: Không có giá trị nào của x để P=3
c) Thay \(x=7+2\sqrt{3}\) vào P, ta được:
\(P=2-7-2\sqrt{3}=-5-2\sqrt{3}\)
Vậy: Khi \(x=7+2\sqrt{3}\) thì \(P=-5-2\sqrt{3}\)