a)4x-1+5.4x-2=576
=> 4x-1(1+5.\(4^{-1}\))=576
=> 4x-1.\(\dfrac{9}{4}\)=576
=> 4x-1=256=44
=> x-1=4
=> x=5
b) (2x-1)6=(2x-1)8
=> (2x-1)6 - (2x-1)8=0
=> (2x-1)6(1- (2x-1)2)=0
=>\(\left[{}\begin{matrix}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x-1=0\\\left(2x-1\right)^2=1\end{matrix}\right.=>\left[{}\begin{matrix}2x=1\\\left(2x-1\right)^2=1hoặc\left(2x-1\right)^2=-1\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x-1=1hoặc2x-1=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\2x=2hoặc2x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1hoặcx=0\end{matrix}\right.\)
Vậy x\(\in\)\(\left\{\dfrac{1}{2},1,0\right\}\)
c) (2x-5)2000+(3y+4)2002 \(\le0\)
Có (2x-5)2000\(\ge\)0 với mọi x
(3y+4)2002\(\ge\)0 với mọi y
=> (2x-5)2000+(3y+4)2002 \(\ge\) 0
=> Để (2x-5)2000+(3y+4)2002 \(\le0\) thì (2x-5)2000+(3y+4)2002 =0
=> \(\left\{{}\begin{matrix}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{matrix}\right.=>\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.=>\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=\dfrac{-4}{3}\end{matrix}\right.\)
Vậy x=\(\dfrac{5}{2}\);y=\(\dfrac{-4}{3}\)
Bài 2:
Có A=2100-299+298-...+22-2
=> 2A=2(2100-299+298-...+22-2)
=> 2A= 2101-2100+299-...+23-22
=> 2A= 2101-2100+299-...+23-22
+A= 2100-299+298-...+22-2
=> 3A= 2101-2
=> A=\(\dfrac{2^{101}-2}{3}\)