Bài 1:
\(A=\dfrac{3-2x}{x-1}>0\)
\(TH_1:\left\{\begin{matrix}3-2x>0\\ x-1>0\end{matrix}\right. \Leftrightarrow \left\{\begin{matrix}x<\dfrac{3}{2}\\ x>1\end{matrix}\right. \Leftrightarrow 1< x<\dfrac{3}{2}\)
\(TH_2:\left\{\begin{matrix}3-2x<0\\ x-1<0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}x>\dfrac{3}{2}\\ x<1\end{matrix}\right.\) (loại)
\(A>0\Leftrightarrow1< x< \dfrac{3}{2}\)
Bài 2:
\(x-xy+y-2=3\\ \Leftrightarrow-x\left(y-1\right)+\left(y-1\right)=4\\ \Leftrightarrow\left(y-1\right)\left(x-1\right)=-4\)
Vì \(x,y\in Z\Rightarrow x-1\) và \(y-1\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau:
| \(x-1\) | -4 | -2 | -1 | 1 | 2 | 4 |
| \(y-1\) | 1 | 2 | 4 | -4 | -2 | -1 |
| \(x\) | -3 | -1 | 0 | 2 | 3 | 5 |
| \(y\) | 2 | 3 | 5 | -3 | -1 | 0 |
Vậy...
Bài 3:
\(B=\dfrac{2x^2-3}{x-1}=\dfrac{2x^2-2-1}{x-1}=\dfrac{2\left(x+1\right)\left(x-1\right)-1}{x-1}=2\left(x+1\right)-\dfrac{1}{x-1}\)
Để B nguyên \(\Leftrightarrow\dfrac{1}{x-1}\) nguyên \(\Rightarrow1⋮x-1\Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\)
Mà \(x\in N\Rightarrow x=2\)
Vậy...