bài 1: tìm điều kiện xác định với giá trị nào của x thì các biểu thức sau đây xác định
a, \(\sqrt{-2x+3}\)
b, \(\sqrt{3x+4}\)
c, \(\sqrt{1+x\overset{2}{ }}\)
d, \(\sqrt{^{-3}_{3x+5}}\)
e, \(\sqrt{\dfrac{2}{x}}\)
help me :((
1. Rút gọn \(A=\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
2. Tính \(B=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
3.Tính \(C=\frac{\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\cdot\left(3+\sqrt{5}\right)}{\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}}\)
1) \(\sqrt{x-1}=\sqrt{2x+3}\)
2) \(\sqrt{2x-3}=\sqrt{x-1}\)
3) \(\sqrt{2-x}=\sqrt{3+x}\)
4) \(\sqrt{4x-8}=2\sqrt{x-2}\)
5) \(\sqrt{x^2-5}\sqrt{4x-9}\)
6) \(\sqrt{x-2}=\sqrt{x^2-2x}\)
7) \(\sqrt{x^2-3x}=\sqrt{15-5x}\)
8) \(\sqrt{4x^2-9}=\sqrt{-20-18}\)
Có điều kiện cho từng câu hộ mình nhé!!!
9) \(\sqrt{x-2}=\sqrt{x-2}\)
giải các pt
1, \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
2, \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
3, \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
4, \(2x^2+\sqrt{x^2-4x+12}=4x+8\)
5, \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
So sánh:
a, 5+\(\sqrt{ }\)2 và 4+ \(\sqrt{ }\)3
b, \(\)\(\sqrt{ }\)8 - \(\sqrt{ }\)2 và \(\sqrt{ }\)5 - \(\sqrt{ }\)3
c, \(\sqrt{ }\)5 - \(\sqrt{ }\)3 và \(\sqrt{ }\)10 - \(\sqrt{ }\)7
Bài 1:
a) \(\sqrt{13-2\sqrt{42}}\)
b) \(\sqrt{46+6\sqrt{5}}\)
c) \(\sqrt{12-3\sqrt{15}}\)
d) \(\sqrt{11+\sqrt{96}}\)
Bài 2:
a) \(A=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
b) \(B=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
c) \(C=\sqrt{3-\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
d) \(D=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
e) \(E=\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
g) \(G=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
h) \(H=4x-\sqrt{9x^2-12x+4}\)
i) \(\frac{\sqrt{7}-\sqrt{2}}{\sqrt{7}+\sqrt{2}}+\frac{\sqrt{7}+\sqrt{2}}{\sqrt{7}-\sqrt{2}}\)
Rút gọn các biểu thức sau
a,\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
b,\(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{x\sqrt{x}+1}\)
c,\(C=\left(1-\dfrac{x+3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
d,\(D=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
e,\(E=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Giải các phương trình vô tỉ (Phương trình có chứa căn thức)
1) \(\sqrt{x^2-20x+100}=10\)
2) \(\sqrt{x+2\sqrt{x}+1}=6\)
3) \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
4) \(\sqrt{3x+2\sqrt{3x}+1}=5\)
5) \(\sqrt{x^2+2x\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}\)
6) \(\sqrt{6x+4\sqrt{6x}+4}=7\)
7) \(\sqrt{2x^2-2x\sqrt{6}+3}-\sqrt{5-\sqrt{24}}=0\)
8) \(\sqrt{3-2\sqrt{2}}-\sqrt{x^2-2x\sqrt{2}+2}=0\)
9) \(\sqrt{11-\sqrt{120}}=\sqrt{5x^2+x\sqrt{120}+6}\)
giải các phương trình sau:
\(\)1, \(\sqrt{10-x}+\sqrt{x+3}\)=5
2, \(\sqrt{15-x}+\sqrt{3-x}\)=6
3, \(\sqrt{4x+1}-\sqrt{3x+4}=1\)
4, \(\sqrt{x+\sqrt{2x-1}}\)+\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
5, \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
Giải các pt sau:
1, \(\sqrt{x^2+x+1}=2x+\sqrt{x^2-x+1}\)
2, \(2x^2+2x+6=2x\sqrt{x^2-x+1}+4\sqrt{3x+1}\)
3, \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(1+\sqrt{x^2+3x}\right)=3\)
4, \(\sqrt{2x^2-1}+\sqrt{x^2-3x-2}=\sqrt{2x^2-2x+3}+\sqrt{x^2-x+2}\)
5, \(13\sqrt{x-1}+9\sqrt{x+1}=16x\)