Bài 1"
\(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\\ =\left(x+2+y\right)\left(x+2-y\right)\)
Baif2:
Có: a+b+c=0
=>a+b=-c
=>\(\left(a+b\right)^3=-c^3\)
=>\(a^3+b^3+3ab\left(a+b\right)=-c^3\)
=>\(a^3+b^3-3abc=-c^3\) (vì a+b=-c)
=>\(a^3+b^3+c^3=3abc\)
Bài 1. Phân tích đa thức thành nhân tử
x2 + 4x - y2 + 4
= ( x2 - y2 ) + ( 4x + 4 )
=( x + y ) ( x - y ) + 4 ( x + 1)
bài 1 : Phân tích đa thức thành nhân tử
\(x^2+4x-y^2+4\)
\(\Rightarrow\left(x^2+4x+4\right)-y^2\)
\(\Rightarrow\left(x+2\right)^2-y^2\)
\(\Rightarrow\left(x+2-y\right)\times\left(x+2+y\right)\)