b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
<=>\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)\( \left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
mà \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\ne0\)
nên phương trình đó xảy ra khi và chỉ khi x+2009=0
<=>x=-2009
Vậy phương trình có no là x=-2009
b) \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)\)=
\(\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\) \(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\)\(\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\) \(\left(x+2009\right)\)\(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)= 0
\(\Leftrightarrow\)\(x+2009=0\)
( vì \(\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\) \(\ne0\))
\(\Leftrightarrow\) \(x=-2009\)
Vậy x = -2009
a)<=>(x2+x)2+2*(x2+x)*2+22=12+4
<=>(x2+x+2)2=16
<=>x2+x+2=4 hoặc x2+x+2=-4
*)x2+x+2=4 <=> x2+x-2=0 <=> x2+2x-x-2=0
<=>x(x+2)-(x+2)=0
<=>(x-1)(x+2)=0
<=>x-1=0 hoặc x+2=0
*1)x-1=0 <=>x=1
*2)x+2=0 <=>x=-2
*)x2+x+2=-4 <=> x2+x+6=0 <=> x2+2*1/2*x+1/4=-23/4 <=> (x+1/2)2=-23/4 (PTVN)
Vậy phương trình có tập no là S={1;-2}
đặt (x^2+x)=y
<=> y^2+4y+4=16
<=> (y+2)^2=4^2
TH1: y+2=4=> y=2
=> x^2+x=2<=> (x+1/2)^2=9/4\(\left[\begin{matrix}x_1=-\frac{1}{2}+\frac{3}{2}=1\\x_2=-\frac{1}{2}-\frac{3}{2}=-2\end{matrix}\right.\)
TH2: y+2=-4=> x^2+x=-6 vô nghiệm
Kết luận:
phương trình có nghiệm
x={-2,1}
b)
cộng 1 vào từng số hạng hai vế=> tử các số hạng đề =x+2009
\(\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+2009\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)
\(\left(x+2009\right)\left(.....\right)=0\)
cái (...) khác 0=> x=-2009 là nghiệm duy nhất