Bài 1: Cho tam giác ABC vuông tại A. Vẽ đường cao AH. Chứng minh :
a) Tam giác ABC đồng dạng tam giác ABH.
b)Vẽ phân giác AI. Tính IB, IC biết \(\frac{AB}{AC}=\frac{2}{3}\) ; BC = 10cm.
Bài 2: Cho tam giác ABC và đương trung tuyến BM . Trên đoạn BM lấy điểm D sao cho \(\frac{BD}{BM}=\frac{1}{2}\), tia AD cắt BC tại K , cắt tia Bx tại E ( Bx // AC ).
a) Tìm tỉ số \(\frac{BE}{AC}\).
b) Chứng minh \(\frac{BK}{BC}=\frac{1}{5}\).
c) Tìm tỷ số diện tích của hai tam giác ABK và ABC.
a) Xét ΔABC vuông tại A và ΔABH vuông tại H có \(\widehat{B}\) chung
nên ΔABC\(\sim\)ΔABH(g-g)
b) Xét ΔABC có AI là đường phân giác ứng với cạnh BC(gt)
nên \(\frac{AB}{BI}=\frac{AC}{IC}\)(tính chất đường phân giác của tam giác)
\(\Leftrightarrow\frac{AB}{AC}=\frac{BI}{IC}\)
hay \(\frac{IB}{IC}=\frac{2}{3}\)
\(\Leftrightarrow\frac{IB}{2}=\frac{IC}{3}\)
Ta có: IB+IC=BC(I nằm giữa B và C)
hay IB+IC=10cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{IB}{2}=\frac{IC}{3}=\frac{IB+IC}{2+3}=\frac{10}{5}=2cm\)
Do đó:
\(\left\{{}\begin{matrix}\frac{IB}{2}=2cm\\\frac{IC}{3}=2cm\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}IB=4cm\\IC=6cm\end{matrix}\right.\)
Vậy: IB=4cm; IC=6cm