a: Xét tứ giác BGCN có
D là trung điểm của đường chéo BC
D là trung điểm của đường chéo GN
Do đó: BGCN là hình bình hành
a: Xét tứ giác BGCN có
D là trung điểm của đường chéo BC
D là trung điểm của đường chéo GN
Do đó: BGCN là hình bình hành
Cho ∆ABC nhọn, AB < AC. Hai đường trung tuyến AD và BE cắt nhau tại G. Trên tia đối của tia DE lấy điểm M sao cho DM = DE.
a/ Chứng minh AEMB là hình bình hành.
b/ Gọi O là giao điểm của AM và BE. Chứng minh DO // AE.
c/ Gọi N là giao điểm của DO và AB. Chứng minh N, G, C thẳng hàng.
Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I. Chứng minh rằng:
a)Tứ giác AMCK là hình bình hành.
b)Tứ giác ABMK là hình gì?Vì sao?
c)Trên tia đối của tia MA lấy điểm E sao cho ME=MA. Chứng minh tứ giác ABEC là hình thoi.
d)Tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông.
Cho tam giác ABC vuông tại A. Gọi M,N lần lượt là trung điểm của AC và BC.
a) Chứng minh rằng tứ giác AMNB là hình thang vuông.
b)Gọi I là giao điểm của BM và AN. Trên tia đối của tia NA lấy điểm E sao cho sao cho
NE = NI. Trên tia đối của tia MB lấy điểm F sao cho MF = MI. Chứng minh rằng EF // AB.
c) Gọi H là trung điểm cảu AB, K là trung điểm của EF. Chứng minh rằng bốn điểm
C,K,I,H thẳng hàng
Giải Cho tam giác ABC nhọn, các đường trung tuyến AM và BN cắt nhau tại G. Trên BN lấy E sao cho N là trung điểm EG. 1) Chứng minh AGCE là hình bình hành 2)Trên tia AM lấy F(F khác A) sao cho AG=GF. Chứng minh rằng: a) MG=MF b) BF song song AE 3) Để tứ giác AECF là hình thang cân thì tam giác ABC cần điều kiện gì?
Bài 16. Cho ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng của M qua I.
a) Tứ giác AMCK là hình gì? Vì sao?
b) Tứ giác AKMB là hình gì? Vì sao?
c) Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh tứ giác ABEC là hình bình hành.
cho tam giác ABC vuông cân tại A. Trên đoạn thằng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường thẳng vuông góc với Ab cắt BI tại K
a. cmr tứ giác EKFC là hình bình hành
b. qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. cmr: AI=BM
c. cmr C đối xứng với D qua MF
Cho tam giác ABC . Hai đường trung tuyến BE và CF cắt nhau tại O . Trên tia đối EB lấy M sao cho EM =EO . Trên tia đối FC lấy N sao cho FN=FO . Chứng minh BNMC là hình bình hành
Baøi 3. Cho tam giác ABC trên tia đối của tia AB lấy điểm D sao cho AD = AB, trên tia đối của tia AC lấy E sao cho AE=AC. Chứng minh BCDE là hình bình hành.
Baøi 3. Cho tam giác ABC trên tia đối của tia AB lấy điểm D sao cho AD = AB, trên tia đối của tia AC lấy E sao cho AE=AC. Chứng minh BCDE là hình bình hành.