a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Xét tứ giác AEBC có
N là trung điểm chung của AB và EC
=>AEBC là hình bình hành
=>AE//BC
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Xét tứ giác AEBC có
N là trung điểm chung của AB và EC
=>AEBC là hình bình hành
=>AE//BC
Bài 2: Cho tam giác nhọn ABC. Gọi D, E, F lần lượt là trung điểm của AB, AC và BC. Vẽ điểm I sao cho D là trung điểm của IF.
a) CM: tứ giác BDEC là hình thang; b) CM: tứ giác AEFD, AFBI là hình bình hành.
Bài 2: Cho tam giác nhọn ABC. Gọi D, E, F lần lượt là trung điểm của AB, AC và BC. Vẽ điểm I sao cho D là trung điểm của IF.
a) CM: tứ giác BDEC là hình thang; b) CM: tứ giác AEFD, AFBI là hình bình hành.
Cho tam giác abc cân tại a,trung tuyến am,i là trung điểm ac,k là trung điểm ab,e là trung điểm am.Gọi n là điểm đối xứng của m qua i a)chứng minh akmi là hình thoi b) tứ giác amcn là hình gì?vì sao? c) chứng minh e là trung điểm bn
Cho tam giác ABC gọi D,E,F là đường trung điểm của các cạnh AB,AC,BC a) chứng minh DE là đường trung bình của tam giác ABC b) chứng minh tứ giác DECF là hình bình hành c) tìm điều kiện của tam giác ABC để tứ giác ADFE là hình chữ nhật
Cho tam giác ABC( AB < AC). Gọi M,N lần lượt là trung điểm của các cạnh AB, AC.
a) Chứng minh tứ giác MNCB là hình thang.
b) Cho MN = 3,5 cm. Tính độ dài đoạn thẳng BC.
c) Gọi E là trung điểm của BC. Chứng minh tứ giác MNCE là hình bình hành.
Bài 1. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là trung điểm của AB.
a) Chứng minh tứ giác BKIC là hình thang cân.
b) Lấy N là điểm đối xứng với M qua I. Tứ giác AMCN là hình gì ? Vì sao ?
c) Chứng minh ba đường thẳng AM, BN và IK cùng đi qua một điểm.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Gọi D là điểm đối xứng với B qua M.
a) Chứng minh tứ giác ABCD là hình bình hành.
b) Gọi N là điểm đối xứng với B qua A. Chứng minh tứ giác ACDN là hình chữ nhật.
c) Vẽ đường thẳng qua A song song với MN, cắt BC ở K. Chứng minh KC=2KB.
. Cho ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, AC, BC.
⦁ Chứng minh: Tứ giác MNCB là hình thang, tứ giác BMNP là hình bình hành.
⦁ Gọi O là trung điểm của MN. Chứng minh: 3 điểm A, O, P thẳng hàng.
⦁ Trên tia đối của tia NP lấy điểm F sao cho NF = NP. Trên tia đối của tia MP lấy điểm E sao cho ME = MP. Chứng minh: E đối xứng với F qua A.
⦁ ABC cần thêm điều kiện gì để BE + CF = BC. Chứng minh.
Câu 27 :Cho Tam giác BMN vuông tại B . Gọi A , C , D lần lượt là trung điểm BM , BN , MN a/ Tứ giác BADC là hình gì ? vì sao ? b/ Chứng minh tứ giác ADNC là hình bình hành
Câu 28 : Cho hình thang ABCD . Gọi E , F , G , H theo thứ tự là trung điểm của AB , BC , CD , DA . a. Tứ giác EFGH là hình gì ? vì sao ? b. Nếu ABCD là hình thang cân thì tứ giác EFGH là hình gì ?
Câu 29. Một miếng đất hình chữ nhật có độ dài 2 cạnh lần lượt là 14m và 5m ; người ta làm bồn hoa hình vuông cạnh 4m, phần đất còn lại để trồng cỏ, hỏi diện tích trồng cỏ là bao nhiêu m2 ?
Câu 30. Một hình vuông có diện tích bằng diện tích một hình chữ nhật có chiều rộng 2 m và chiều dài 8m, độ dài cạnh hình vuông là: