a/ Ta có: M là trung điểm của AB, N là trung điểm của BC
⇒ MN là đường trung bình của △ABC ⇒ MN // AC (1)
- AB hay AM ⊥ AC (2)
Từ (1) và (2)
Vậy: Tứ giác AMNC là hình thang vuông (đpcm)
===========
b/ Áp dụng định lí Pytago vào △ABC được: \(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)
Do MN là đường trung bình của △ABC \(\Rightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)
- E là trung điểm AM, F là trung điểm CN ⇒ EF là đường trung bình của hình thang AMNC ⇒ \(EF=\dfrac{MN+AC}{2}=\dfrac{6+12}{2}=9\left(cm\right)\)
Vậy: EF = 9 cm