Bài 1 :
Cho ΔABC nhọn (AB>AC) và hai đường cao BD và CE.
a) Chứng minh : ΔADB đồng dạng với ΔAEC
b) Chứng minh : AD.BC = AB.DE
c) Tia ED cắt BC tại O. Chứng minh : OD.OE = OB.OC
Bài 2 :
Cho ΔABC vuông tại A (AB<AC) có AH là đường cao (H ∈ BC)
a) Chứng minh : ΔHBA đồng dạng với ΔABC và HB.AC = HA.AB
b) Chứng minh : HA2 = HB.HC
c) Gọi M là trung điểm của AH. Trên tia đối của tia AC lấy điểm N sao cho \(AN=\dfrac{1}{2}AC\). Chứng minh : ΔBHM đồng dạng với ΔBAN.
d) Chứng minh góc BMN = 90o
Câu 1:
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc BAD chung
DO đo: ΔADB đồng dạng với ΔAEC
Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
Do đó: ΔADE đồng dạng với ΔABC
Suy ra: DE/BC=AD/AB
hay \(DE\cdot AB=AD\cdot BC\)
c: Xét ΔOBE và ΔODC có
góc OBE=góc ODC
góc BOE chung
Do đo: ΔOBE đồng dạng với ΔODC
Suy ra: OB/OD=OE/OC
hay \(OB\cdot OC=OE\cdot OD\)