Ôn tập: Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Phương

Bài 1 :

Cho ΔABC nhọn (AB>AC) và hai đường cao BD và CE.

a) Chứng minh : ΔADB đồng dạng với ΔAEC

b) Chứng minh : AD.BC = AB.DE

c) Tia ED cắt BC tại O. Chứng minh : OD.OE = OB.OC

Bài 2 :

Cho ΔABC vuông tại A (AB<AC) có AH là đường cao (H ∈ BC)

a) Chứng minh : ΔHBA đồng dạng với ΔABC và HB.AC = HA.AB

b) Chứng minh : HA2 = HB.HC

c) Gọi M là trung điểm của AH. Trên tia đối của tia AC lấy điểm N sao cho \(AN=\dfrac{1}{2}AC\). Chứng minh : ΔBHM đồng dạng với ΔBAN.

d) Chứng minh góc BMN = 90o

Nguyễn Lê Phước Thịnh
2 tháng 7 2022 lúc 21:58

Câu 1:

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc BAD chung

DO đo: ΔADB đồng dạng với ΔAEC

Suy ra: AD/AE=AB/AC
hay AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

Do đó: ΔADE đồng dạng với ΔABC

Suy ra: DE/BC=AD/AB

hay \(DE\cdot AB=AD\cdot BC\)

c: Xét ΔOBE và ΔODC có

góc OBE=góc ODC

góc BOE chung

Do đo: ΔOBE đồng dạng với ΔODC

Suy ra: OB/OD=OE/OC

hay \(OB\cdot OC=OE\cdot OD\)


Các câu hỏi tương tự
Shoun
Xem chi tiết
anh
Xem chi tiết
thanh mai
Xem chi tiết
Valila Charlotte
Xem chi tiết
Lê Ngô Tường Vi
Xem chi tiết
kth_ahyy
Xem chi tiết
Anh Dương Na
Xem chi tiết
Nguyễn Quang Bảo
Xem chi tiết
Chang Đinh
Xem chi tiết