Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Mai Anh

Bài 1: Cho các số a, b thỏa mãn: \(6a^2=15b^2+ab\)\(a^2+b^2\)khác 0. Tính giá trị biểu thức: \(M=\dfrac{11a^2-2ab+9b^2}{5a^2+3ab+6b^2}\).

Bài 2: Cho \(\Delta ABC\) có các đường cao BE và CF cắt nhau tại H. Gọi I là trung điểm của AH, K là trung điểm của BC. Biết AH = 12,456 cm; BC = 20,1234 cm. Tính độ dài IK.

Bài 3:

a) Tìm \(P\left(x\right)=ax^{\text{4}}-bx^3+cx^2-dx^2+e\) biết P(x) chia hết cho x2 -1 và P(x) chia cho (x2 +2) dư x và P(2) = 2012.

b) Biết Q(x) chia x - 1 dư 5; chia x – 14 dư 9. Tìm dư của Q(x) khi chia cho (x – 1)(x – 14)

Các bạn giúp đỡ mình nhé!!!

Nguyễn Quang Định
18 tháng 7 2017 lúc 18:00

a)Theo định lí Bezout, lần lượt thay x=1 và -1 vào P(x), ta được:

\(\left\{{}\begin{matrix}a-b+c-d+e=0\left(1\right)\\a+b+c+d+e=0\left(2\right)\end{matrix}\right.\)

Thực hiện chia P(x) cho x2+1, ta được số dư là \(\left(2b-d\right)x+e-2c+4a\)

Mà theo giải thiết đề cho, ta được:

\(\left(2b-d\right)x+e-2c+4a=x\)

Đồng nhất thức, ta được:

\(\left\{{}\begin{matrix}2b-d=1\\e-2c+4a=0\end{matrix}\right.\)

P(2)=2012

=>16a-8b+4c-2d+e=2012(5)

Giải hệ (1),(2) => b+d=0(6)

Giải hệ (3),(6), => b=1/3; d= -1/3

Thay b,d vào (1),(5), ta được:

\(\left\{{}\begin{matrix}a+c+e=0\\e-2c+4a=0\\16a+4c+e=2014\end{matrix}\right.\)

\(\Rightarrow a=\dfrac{1007}{9};c=\dfrac{1007}{9};e=\dfrac{-2014}{9}\)

Vậy đa thức P(x) là:

\(\dfrac{1007}{9}x^4-\dfrac{1}{3}x^3+\dfrac{1007}{9}x^2+\dfrac{1}{3}x-\dfrac{2014}{9}\)

b) Q(x)=(x-1).A(x)+5

Q(x)=(x-14).B(x)+9

Vì đa thức chia có bậc 2 nên số dư là bậc 1 ( ax+b)

Q(x)=(x-1)(x-14).C(x)+ax+b

Theo Bezout, thay x=1 và x=14, ta được:

\(\left\{{}\begin{matrix}a+b=5\\14a+b=9\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=\dfrac{4}{13}\\b=\dfrac{61}{13}\end{matrix}\right.\)

Số dư là: \(\dfrac{4}{13}x+\dfrac{61}{13}\)

Nguyễn Hải Dương
18 tháng 7 2017 lúc 21:20

Bài 1:

\(6a^2=15b^2+ab\)

\(6a^2-15b^2-ab=0\)

\(6a^2-10ab+9ab-15b^2=2a\left(3a-5b\right)+3b\left(3a-5b\right)\)

\(=\left(3a-5b\right)\left(2a+3b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3a-5b=0\\2a+3b=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3a=5b\\2a=-3b\end{matrix}\right.\)

* Nếu \(3a=5b\Rightarrow b=\dfrac{3}{5}a\), Thay vào, ta được:

\(\dfrac{11a^2-2ab+9b^2}{5a^2+3ab+6b^2}=\dfrac{11a^2-2a.\left(\dfrac{3}{5}a\right)+9.\left(\dfrac{3}{5}\right)^2.a^2}{5a^2+3a.\left(\dfrac{3}{5}a\right)+6.\left(\dfrac{3}{5}\right)^2.a^2}=\dfrac{163}{112}\)

Làm tương tự đối với 2a = -3b

Nguyễn Hải Dương
17 tháng 7 2017 lúc 9:53

dùng máy Casio nữa ak

Nguyễn Quang Định
17 tháng 7 2017 lúc 10:49

Bài 3 Bezout đi

Nguyễn Hải Dương
18 tháng 7 2017 lúc 21:23

còn hình chưa hc nên cx ngại con chưa vẽ hình :))

Nguyễn Hải Dương
20 tháng 7 2017 lúc 10:42

công bố đpá án đi


Các câu hỏi tương tự
Nguyễn Thu Hằng
Xem chi tiết
nảo
Xem chi tiết
phuong thanh
Xem chi tiết
A Lan
Xem chi tiết
Lâm Hoàng Tuấn Kiệt
Xem chi tiết
Nấm Chanel
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Băng
Xem chi tiết
Nguyễn Thiện Minh
Xem chi tiết