Ta có : \(\dfrac{a}{a+b+c}< \dfrac{a}{a+b}< \dfrac{a+c}{a+b+c}\left(1\right)\)
\(\dfrac{b}{a+b+c}< \dfrac{b}{b+c}< \dfrac{b+a}{a+b+c}\left(2\right)\)
\(\dfrac{a}{a+b+c}< \dfrac{c}{a+c}< \dfrac{c+b}{a+b+c}\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3 ) , ta có :
\(1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< 2\)