Bài 1:
a) Tính giá trị của biểu thức: \(\frac{\frac{1}{3}-\frac{1}{7}+\frac{1}{11}}{\frac{2}{3}+\frac{2}{11}-\frac{2}{7}}-\frac{\frac{1}{5}-\frac{1}{3}-\frac{1}{11}}{\frac{2}{3}+\frac{2}{11}-\frac{2}{5}}\)
b) Với n là số nguyên dương, hãy xác định chữ số tận cùng của giá trị biểu thức: \(3^{n+2}+3^n-2^{n+2}-2^n\)
giúp mik với mik đag cần gấp
\(a)\)\(\frac{\frac{1}{3}-\frac{1}{7}+\frac{1}{11}}{\frac{2}{3}+\frac{2}{11}-\frac{2}{7}}-\frac{\frac{1}{5}-\frac{1}{3}-\frac{1}{11}}{\frac{2}{3}+\frac{2}{11}-\frac{2}{5}}\)\(=\frac{\frac{1}{3}-\frac{1}{7}+\frac{1}{11}}{2.\left(\frac{1}{3}+\frac{1}{11}-\frac{1}{7}\right)}+\frac{\frac{-1}{5}+\frac{1}{3}+\frac{1}{11}}{2.\left(\frac{1}{3}+\frac{1}{11}-\frac{1}{5}\right)}\)
\(=\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1\)
ở câu a : dấu giữa 2 phép tính là cộng chứ không phải trừa nha
\(b)\)\(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n.3^2+3^n-2^{^{n-1+3}}-2^{n-1+1}\)
\(=3^n.\left(3^2+1\right)-2^{n-1}.2^3-2^{n-1}.2\)
\(=3^n.10-2^{n-1}.\left(2^3+2\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\)
\(\Rightarrow(3^{n+2}+3^n-2^{n+2}-2^n)⋮10\)
Vì n là số nguyên dương và \((3^{n+2}+3^n-2^{n+2}-2^n)⋮10\) nên \(3^{n+2}+3^n-2^{n+2}-2^n\) có chữ số tận cùng là 0.