1)
a) \(5n-8⋮4-n\)
\(\Rightarrow-20+5n+12⋮4-n\)
\(\Rightarrow-5\left(4-n\right)+12⋮4-n\)
\(\Rightarrow12⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)
+) \(4-n=-1\Rightarrow n=5\)
+) \(4-n=1\Rightarrow n=3\)
+) \(4-n=-2\Rightarrow n=6\)
+) \(4-n=2\Rightarrow n=2\)
+) \(4-n=-3\Rightarrow n=7\)
+) \(4-n=3\Rightarrow n=1\)
+) \(4-n=-4\Rightarrow n=8\)
+) \(4-n=4\Rightarrow n=0\)
+) \(4-n=-6\Rightarrow n=10\)
+) \(4-n=6\Rightarrow n=-2\)
+) \(4-n=-12\Rightarrow n=16\)
+) \(4-n=12\Rightarrow n=-8\)
Vậy \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;16;-8\right\}\)
b) Ta có:\(n^2+3n+6⋮n+3\)
\(\Rightarrow n\left(n+3\right)+6⋮n+3\)
\(\Rightarrow6⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
+) \(n+3=-1\Rightarrow n=-4\)
+) \(n+3=1\Rightarrow n=-2\)
+) \(n+3=-2\Rightarrow n=-5\)
+) \(n+3=2\Rightarrow n=-1\)
+) \(n+3=-3\Rightarrow n=-6\)
+) \(n+3=3\Rightarrow n=0\)
+) \(n+3=-6\Rightarrow n=-9\)
+) \(n+3=6\Rightarrow n=3\)
Vậy \(n\in\left\{-4;-2;-5;-1;-6;0;-9;3\right\}\)