a> B=\(\left(\dfrac{3+\sqrt{1-a^2}}{\sqrt{1+a}}\right)\):\(\left(\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}\right)\)
=\(\dfrac{3+\sqrt{1-a^2}}{\sqrt{1+a}}\).\(\dfrac{\sqrt{1-a^2}}{3+\sqrt{1-a^2}}\)
= \(\dfrac{\sqrt{1-a^2}}{\sqrt{1+a}}\)
a: \(B=\dfrac{3+\sqrt{1-a^2}}{\sqrt{1+a}}:\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}=\sqrt{\dfrac{1-a^2}{1+a}}=\sqrt{1-a}\)
b: \(a=\dfrac{\sqrt{3}}{2+\sqrt{3}}=2\sqrt{3}-3\)
Khi a=2 căn 3-3 thì \(B=\sqrt{1-2\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)