Bài 1: Rút gọn biểu thức : \(\left(2-\sqrt{2}\right).\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)
Bài 2: Cho biểu thức: P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
a) Rút gọn biểu thức (tìm đk)
b) Tìm x để P = 2
BÀi 3: Q = \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Rút gọn biểu thức (tìm đk)
b) Tìm giá trị của a để Q > 0
Bài 1 : Rút gọn biểu thức :
\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)
\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)
\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)
\(=-10\sqrt{2}+10-7+30\sqrt{2}\)
\(=20\sqrt{2}+3\)
Bài 2:
a) ĐKXĐ : x # 4 ; x # - 4
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\)
Vậy, để P = 2 thì x = 16.
Bài 3 :
a) ĐKXĐ : a # 1 ; a # 0, a # 4
\(Q=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(Q=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(Q=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{1}\)
\(Q=\dfrac{\sqrt{a}-2}{\sqrt{a}}\)
b) Để \(Q>0\) thì \(\dfrac{\sqrt{a}-2}{\sqrt{a}}>0\)
\(\Leftrightarrow\sqrt{a}-2>0\)
\(\Leftrightarrow\sqrt{a}>2\Leftrightarrow a>4\)
Vậy, để Q > 0 thì a > 4
\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)
= \(-10\sqrt{2}+10-\left(18-30\sqrt{2}+25\right)\)
= \(-10\sqrt{2}+10-18+30\sqrt{2}-25\)
= \(20\sqrt{2}-33\)
Câu 2:
a) P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
ĐK : \(x\ge0;x\ne4\)
Ta có: P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
= \(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\)
\(\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{x+2\sqrt{x}+\sqrt{x}+3+2-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b) Để P = 2 <=> \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)
=> \(3\sqrt{x}=2\sqrt{x}+4\)
<=> \(\sqrt{x}=4\) <=> \(x=16\left(TM\right)\)
bài 2 : a) điều kiện : \(x\ne4;x\ge0\)
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{2+5\sqrt{x}}{x-4}\)
P = \(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-\left(2+5\sqrt{x}\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
P = \(\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\) = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\) = \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b) P = 2 \(\Leftrightarrow\) \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\) \(\Leftrightarrow\) \(2\sqrt{x}+4=3\sqrt{x}\) \(\Leftrightarrow\) \(\sqrt{x}=4\) \(\Leftrightarrow\) \(x=16\)
T_T sorry bn nha, mik lm sai nhiều quá