a, \(\sqrt{b}\) tồn tại \(\Leftrightarrow b>0\)
\(\left\{{}\begin{matrix}\sqrt{b}+1\ne0\\\sqrt{b}-1\ne0\\b-1\ne0\end{matrix}\right.\Leftrightarrow b\ne1\)
Vậy B có nghĩa khi \(\left\{{}\begin{matrix}b>0\\b\ne1\end{matrix}\right.\)
b,
\(B=\dfrac{\sqrt{b}}{\sqrt{b}+1}-\dfrac{\sqrt{b}}{\sqrt{b}-1}-\dfrac{2}{b-1}\)
\(=\dfrac{\sqrt{b}}{\sqrt{b}+1}-\dfrac{\sqrt{b}}{\sqrt{b}-1}-\dfrac{2}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}\)
\(=\dfrac{\sqrt{b}\left(\sqrt{b}-1\right)-\sqrt{b}\left(\sqrt{b}+1\right)-2}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}=\dfrac{b-\sqrt{b}-b-\sqrt{b}-2}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}=\dfrac{-2\left(\sqrt{b}+1\right)}{\left(\sqrt{b}-1\right)\left(\sqrt{b}+1\right)}=\dfrac{-2}{\sqrt{b}-1}=\dfrac{2}{1-\sqrt{b}}\)
c,
\(B>1\Leftrightarrow2>1-\sqrt{b}\)
\(\Leftrightarrow2-\left(1-\sqrt{b}\right)=1+\sqrt{b}>0\) (luôn đúng với mọi b)
=> Với mọi b có ĐKXĐ là b khác 0 và b > 1 thì B > 1