cho tam giác mnp vuông tại m (mp<mn) trên cạnh mn lấy điểm q sao cho mq=mp trên tia đối của tia mp lấy điểm r sao cho mr=mn chứng minh :
a) pq vuông góc nr b) rq vuông góc np
Cho tam giác MNP có 3 góc nhọn , các đường cao NQ , PR cắt nhau tại S
a) Chứng minh MS vuông góc NP
b) Cho góc MNP = 65°. Tính góc SMR
Cho tam giác MNP có 3 góc nhọn,các đường cao NQ,PR cắt nhau tại S.
a)Cm MS vuông góc với NP
b)cho ^MNP=65*.tính SMR^
cho tam giác abc có ba góc nhọn đường cao AH trên một nửa MP thẳng bờ lại đường thẳng a có chứa điểm b kẻ CX song song AD trên tia ax lấy điểm D sao cho CD = AB kẻ DK vuông góc BC k thuộc D sao cho CD = AB kể DK vuông góc BC ê k thuộc BC
a) AH= DK
b)CA=CD
C)AC song song BD
Dùng eke vẽ 3 đường cao của tam giác ABC.
Hãy cho biết ba đường cao của tam giác đó có cùng đi qua một điểm hay không. Vì sao ?
giúp mk đi mn
Cho tam giác ABC, góc A =135 độ,AH là đường cao . Vẽ BK vuông góc AC,CK cắt HA tại E
a, Chứng minh BA vuông góc với EC.
b, Chứng minh AK=BK.
c, So sánh AE và BC.
Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD của tam giác ABC, trên Bc lấy E sao cho BE=BA. a) CM: Tam giác ABD = tam giác EBD và ED vuông góc với BC b) Gọi F là giao điểm của AB và và DE. CM: tam giác BFC cân
Nhờ mọi người vẽ hình giúp em vs ạ! Ko cần giải đâu
Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh của hai góc nhọn) bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.
Bài 1:
a) Cho tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng tam giác đó là tam giác cân.
b) Cho tam giácABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.