P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
Tìm giá trị của x sao cho P>0
1) Cho biểu thức:
P=\(\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{2.\left(x-2\sqrt{x}+1\right)}{x-1}\)
a) Rút gọn P
b) Tìm x nguyên để P có giá trị nguyên
Cho biểu thức: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\). Tìm tất cả các giá trị của x để biểu thức A nhận giá trị là 1 số nguyên
P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{8\sqrt{x}+8}{x+2\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}}\right):\left(\dfrac{x+\sqrt{x}+3}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}}\right)\)
a. rút gọn P
b. chứng minh rằng với mọi giá trị x ta luôn có P\(\le1\)
Rút gọn các biểu thức sau:
a) R = \(\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{\sqrt{xy}-1}\right)\)
b) C = \(\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{7\sqrt{x}+4}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
c) M = \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+x}\)
tìm x,y,z để biểu thức sau có giá trị bằng 2
\(A=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}\)
Cho biểu thức \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) với \(x\ge0;x\ne1\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị là số nguyên
A=\(\left(\dfrac{x+2\sqrt{x}+1}{x+\sqrt{x}}-\dfrac{1}{1-\sqrt{x}}+\dfrac{2-x}{x-\sqrt{x}}\right):\left(\dfrac{x}{\sqrt{x}-1}-\sqrt{x}\right)\)
Rút gọn biểu thức trên
Cho \(M=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)
Tìm các giá trị lớn nhất hoặc nhỏ nhất của \(P=2M+\sqrt{x}+2-2013\)