Rút gọn các biểu thức sau
a,\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
b,\(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{x\sqrt{x}+1}\)
c,\(C=\left(1-\dfrac{x+3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
d,\(D=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
e,\(E=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Cho biểu thức P=\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
a, a, Tìm đkcđ
b, Rút gọn
\(P=\left(\dfrac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
a) Rút gọn P (x > o, x khác 1)
b) Tìm giá trị của x để P > 0
Rút gọn:
1) \(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}-2\sqrt{3}\)
\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
2) \(\sqrt{3-2\sqrt{2}}+\dfrac{1}{\sqrt{2}-1}\)
\(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}+2}\right).\dfrac{a-4}{\sqrt{4a}}\)
\(N=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}+3}+\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{x+\sqrt{x}-6}\right)\)
\(Q=\left(1-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{2-\sqrt{x}}\right)\)
Làm chi tiết giúp mình với vì mình yếu phần này lắm
Bài 1: \(P=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a.Rút gọn P
b, Tìm MaxQ = \(\dfrac{2}{P}+\sqrt{x}\)
Bài 2:
\(P=\left(1-\dfrac{1-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{x+\sqrt{x}+6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\right)\)
a, Rút gọn P
b, Tìm x để P > 0
c, Max Q = P(x+1)
Bài 3:\(P=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
a, Rút gọn P
b, Tìm x để \(Q=\dfrac{2\sqrt{x}}{P}\) nhận giá trị nguyên
Bài 4: Rút gọn: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x+1}}\right)\)
cho biểu thức A=\(\left(\dfrac{4x-9}{2\sqrt{x}-3}+\sqrt{x}\right)\cdot\dfrac{1}{x+2\sqrt{x}+1}\)
a)rút gọn
Cho biểu thức :
A = \(\left(\dfrac{\sqrt{x}-x-3}{x-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{8\sqrt{x}}{x-1}\right)\)
a) Rút gọn A
b) Tĩnh giá trị của A khi x = \(4-2\sqrt{3}\)
c) So sánh A với 1
1. Tính:
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\)
2. Chứng minh:
a) \(\dfrac{\left(3\sqrt{xy}-6y.2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{y}{\sqrt{x}-\sqrt{y}}-\dfrac{2\sqrt{xy}}{xy}\right)=\sqrt{x}+\sqrt{y}\)
Rút gọn: A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{x-\sqrt{x}+1}{x+\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}-\dfrac{x-\sqrt{x}-4}{x+\sqrt{x}-2}\right)\)