ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\div\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}-\left(1-\sqrt{x}\right)}{\sqrt{x}\left(1-\sqrt{x}\right)}\div\left[-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right]\)
\(=-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left[\left(2\sqrt{x}-1\right)\left(-\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\right)\right]\)
\(=-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left[\dfrac{-\left(x-\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\times\left(2\sqrt{x}-1\right)\right]\)
\(=-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\dfrac{-\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)
\(=-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\dfrac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}{-\left(2\sqrt{x}-1\right)}\)
\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)