Bài 1: Căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Mai Lê

bài 1 : cho biểu thức

P=\(\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{2-\sqrt{x}}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

a) Rút gọn biểu thức P

b) Tìm x để \(\dfrac{1}{p}\le-\dfrac{5}{2}\)

Akai Haruma
9 tháng 8 2018 lúc 16:48

Lời giải:

ĐK: \(x\geq 0; x\neq 4;x\neq 9\)

a) Ta có:

\(P=\left(\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}+\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right):\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(P=\left(\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}-3)}+\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-2)(\sqrt{x}-3)}-\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}\right):\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\)

\(P=\frac{\sqrt{x}+2+(x-9)-(x-4)}{(\sqrt{x}-2)(\sqrt{x}-3)}:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

\(P=\frac{\sqrt{x}-3}{(\sqrt{x}-2)(\sqrt{x}-3)}.\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+1}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}+1}{x-4}\)

b)

Ta có: \(\frac{1}{P}\leq \frac{-5}{2}\)\(\Leftrightarrow \frac{x-4}{\sqrt{x}+1}\leq \frac{-5}{2}\)

\(\Leftrightarrow 2(x-4)\leq -5(\sqrt{x}+1)\)

\(\Leftrightarrow 2x+5\sqrt{x}-3\leq 0\)

\(\Leftrightarrow (2\sqrt{x}-1)(\sqrt{x}+3)\leq 0\)

\(\Rightarrow 2\sqrt{x}-1\leq 0\) (do \(\sqrt{x}+3>0\) )

\(\rightarrow x\leq \frac{1}{4}\)

Vậy \(0\leq x\leq \frac{1}{4}\)


Các câu hỏi tương tự
Minatozaki Sana
Xem chi tiết
bbiooo
Xem chi tiết
Ngọc Hà
Xem chi tiết
Lê Quỳnh Hương
Xem chi tiết
Huỳnh Như
Xem chi tiết
sana army
Xem chi tiết
Linh Ngoc Nguyen
Xem chi tiết
Ngọc Hà
Xem chi tiết
Phương Nguyễn
Xem chi tiết