Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trần Duy Thiệu

a.Giải pt \(\sqrt{x+1}+\sqrt{1-3x}=x+2\)

b.Giải hệ pt \(\left\{{}\begin{matrix}x-2y+xy=2\\x^2+4y^2=4\end{matrix}\right.\)

Nguyễn Việt Lâm
14 tháng 11 2018 lúc 16:20

a. ĐK: \(-1\le x\le\dfrac{1}{3}\)

\(\left(x+1\right)-\sqrt{x+1}+1-\sqrt{1-3x}=0\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2-\left(x+1\right)}{x+1+\sqrt{x+1}}+\dfrac{1-\left(1-3x\right)}{1+\sqrt{1-3x}}=0\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{x+1+\sqrt{x+1}}+\dfrac{3x}{1+\sqrt{1-3x}}=0\)

\(\Leftrightarrow x\left(\dfrac{x+1}{x+1+\sqrt{x+1}}+\dfrac{3}{1+\sqrt{1-3x}}\right)=0\)

\(\Rightarrow x=0\) (do \(\dfrac{x+1}{x+1+\sqrt{x+1}}+\dfrac{3}{1+\sqrt{1-3x}}>0\) \(\forall x\) thuộc TXĐ)

b. \(\left\{{}\begin{matrix}x-2y+xy=2\\\left(x-2y\right)^2+4xy=4\end{matrix}\right.\) \(\Rightarrow\) đặt \(\left\{{}\begin{matrix}x-2y=a\\xy=b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2\Rightarrow b=2-a\\a^2+4b=4\end{matrix}\right.\) \(\Rightarrow a^2+4\left(2-a\right)-4=0\)

\(\Rightarrow a^2-4a+4=0\Rightarrow\) \(\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-2y=2\\xy=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn Trần Duy Thiệu
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Trần Thu Trang
Xem chi tiết
Trần Thu Trang
Xem chi tiết
:vvv
Xem chi tiết
Lunox Butterfly Seraphim
Xem chi tiết
Đàm Vũ Đức Anh
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Nguyễn Hiền Mai
Xem chi tiết