Chứng minh rằng:
A=\(\dfrac{x^2+y^2}{\left(x-y\right)^2}-\dfrac{2}{xy}:\left(\dfrac{1}{x}-\dfrac{1}{y}\right)^2=1\)
\(\dfrac{x^2+xy}{x^3+x^2y+xy^2+y^3}.\left(\dfrac{1}{x-y}-\dfrac{2xy}{x^3-x^2y+xy^2-y^3}\right)\)
Tính
\(\left[\dfrac{3x+y}{x\left(x-3y\right)}+\dfrac{3x-y}{x\left(x+3y\right)}\right].\dfrac{\left(x-3y\right)\left(x+3y\right)}{x^2+y^2}\)
1. Chứng minh rằng : \(\left(x+y\right)^2-\left(x-y\right)^2=4xy\)
2.
a ) Tìm giá trị nhỏ nhất của A = \(x^2+8x+2017\)
b ) Cho a - b = 1. Tính \(a^3-3ab-b^3\)
c ) Cho \(x+\dfrac{1}{x}=2\). Tính \(x^2+\dfrac{1}{x^2}\)
I : C/m các biểu thức sau không phụ thuộc vào x ; y
a) 2\(\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)với x + y =1
b) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)
c) \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
Cho x,y >0 . CMR :\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
1. Giải phương trình sau :
a)\(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)
b) \(\dfrac{x+2}{98}+\dfrac{x+4}{96}=\dfrac{x+6}{94}+\dfrac{x+8}{92}\)
c)\(\dfrac{x-2}{77}+\dfrac{x-11}{78}=\dfrac{x+74}{15}+\dfrac{x-73}{16}\)
Thực hiện phép tính
a,\(\left(x-y\right)\left(y^2+y+1\right)+\left(\dfrac{1}{3}x^2y-y\right)\left(2x+y^2\right)\)
b,\(2x^2\left(x-2\right)+3x\left(x^2-x-2\right)-5\left(3-x^2\right)\)
c,\(\left(x-1\right)\left(x-3\right)-\left(4-x\right)\left(2x-1\right)-3x^3+2x-5\)
giải các phương Trình sau
a) \(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
b) \(\dfrac{x+1}{1998}+\dfrac{x+2}{1997}=\dfrac{x+3}{1996}+\dfrac{x+4}{1995}\)
c) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)